RESULTS FROM THE CUORE EXPERIMENT $0\nu\beta\beta$

Sachi. Wagaarachchi^{1,2} on behalf of the CUORE Collaboration

¹Department of Physics, University of California, Berkeley, ²Nuclear Science Division, Lawrence Berkeley National Lab

Neutrinoless Double Beta Decay

Neutrinoless double beta decay $(0\nu\beta\beta)$ is a hypothetical process that results from possible Majorana nature of the neutrino. A positive detection for this decay will,

- > Prove that neutrinos are Majorana particles, and will provide hints about the origins of the matter-antimatter asymmetry
- \succ Conclusively demonstrate lepton number violation and,
- > Help determine the effective Majorana mass of the electron neutrino,

Detector

CUORE (Cryogenic Underground Observatory for Rare Events) at Gran Sasso National Lab is a detector array consisting of 988 TeO₂ crystals ($Q_{\beta\beta} = 2527.5 \text{ keV}$).

Detector array: Total mass of 742 kg. Arranged into 19 towers, 13 floors with 4 crystals each. Crystals: $5 \times 5 \times 5$ cm, each instrumented with a NTD thermister and a

NTDs/Heaters: bonded

connecting the Cu strips.

with $25\,\mu\text{m}$ gold wires

CUORE Program

CUORE is a result of a long running series of TeO₂ bolometric detectors started in 1992 that ranged from $6 \text{ g to } \sim 7 \text{ kg}$ (TeO₂) mass) before Cuoricino.

Detector	Mass	Year(s)
Cuoricino	41.7 kg	2003-2008
CUORE-0	39 kg	2013-2015
CUORE	$742 \mathrm{kg}$	2017-
	Fig !	5 (right). Cuoricina

Fig. 1: $2\nu\beta\beta$ and $0\nu\beta\beta$ diagrams

 $0\nu\beta\beta$ is detected by looking for the tell-tale bump at the end of the $2\nu\beta\beta$ decay spectrum.

A decay deposits energy in the detector, which, in bolometers causes a change in temperature that is directly proportional to the released energy. $\Delta T_{\rm Event} = \frac{E_{\rm Event}}{2}$

Fig.2: $2\nu\beta\beta$ spectrum with $0\nu\beta\beta$ peak

Data Acquisition and Analysis

- Setting operating conditions:
- \succ Temperature scans, select operating temperature,
- \succ Working point measurements for NTDs,

Fig. 3: Fully assembled detector

CUORE Cryostat

heater.

 \succ The cryostat has 6 stages and is designed to operate at 10 mK, and uses a custom built dilution unit.

- \succ In the initial cryogenic commissioning run, it reached below 6 mK at the lowest stage.
- About 1 m^3 volume and 1.5 t cold mass at 10 mK.

Results

- > CUORE data was unblinded after fixing the fitting procedure and the model.
- > The Region of interest (ROI) for $0\nu\beta\beta$, 2465 keV to 2575 keV, is modeled with: a. Decay peak for $0\nu\beta\beta$, b. A coincident γ peak from ⁶⁰Co, c. And a flat background.

- > Jan 2017: First Pulses
- ≻ Oct 2017: First published result (shown here)
- > After few months of optimizing the detector, currently on the second phase of data taking.

Fig. 6: Timeline

Dataset 2

 $48.7 \,\mathrm{kg} \cdot \mathrm{yr}$

 $(7.4 \pm 0.5) \,\mathrm{keV}$

Test

- Noise reduction and pulse tube phase scans
- Data acquisition:
- \succ Front-end electronics: Bias and pre-amplifier,
- Bessel filter: Cutoff frequency at 125 Hz,
- > NI DAQ: Sampling frequency of $1 \, \text{kHz}$,
- ➤ Event builder: Write data, Trigger
- ➤ CORC: (CUORE Online Run Check) Web based monitoring of data and flagging rejected intervals.

- Fig. 7: CORC Monitoring system (left) and Optimal Filter (right)
- \rightarrow **Filter noise** using an Optimal filter
- \rightarrow Apply thermal gain stabilization using pulses from Si heaters
- Energy calibration Scales the stabilized pulse amplitude to energy
- \succ Separate calibration runs with 12 strings of ²³²Th sources lowered into the detector.
- \succ Uses six high statistics peaks (239 keV, 338 keV, 583 keV, 911 keV, 969 keV and 2615 keV).
- \rightarrow **Blind data** by 'salting' the $Q_{\beta\beta}$ region with rescaled

- \succ The ROI was fitted simultaneously for each dataset-bolometer.
- > Number of events in ROI: 155
- $> {}^{60}$ Co fit mean: (2506.4 ± 1.2) keV
- \succ Best fit decay rate:
- $-1.0^{+0.4}_{-0.3}$ (stat.) ± 0.1 (syst.) $\times 10^{-25}$ yr⁻¹
- \succ Interpret the data with both Bayesian and Frequentist (Rolke) techniques

With systematic uncertainties,		Exposure weighted FWHM	$(7.7 \pm 0.5) \rm keV$	
Additive (10^{-1})	$-25 {\rm yr}^{-1})$	Scaling $(\%)$	ROI Background index	$1.49^{+0.18}_{-0.17} \times 10^{-2} \text{ ckky}$ $1.35^{+0.20}_{-0.18} \times 10^{-2} \text{ ck}$
Line shape	0.02	2.4	Madian armostad consitivity	$7.0 \times 10^{24} \mathrm{yr} (\mathrm{Bayesian})$
Energy resolution		1.5	Median expected sensitivity	$7.6 \times 10^{24} \mathrm{yr} (\mathrm{Rolke})$
Fit bias	~	0.2	$\mathbf{T}_{\mathbf{r}} = \left\{ 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 : 1 $	$1.3 \times 10^{25} \mathrm{yr}$ (Bayesian)
Energy scale	-	0.2	Half life limit $(90\% \text{ C.L})$	$2.1 \times 10^{25} \mathrm{yr} (\mathrm{Rolke})$
Background shape	0.5	0.8	Half life limit (90% C.L) with	$1.5 \times 10^{25} \mathrm{yr} \mathrm{(Bayesian)}$
Selection efficiency	112	2.4%	CUORE-0 and Cuoricino	$2.2 \times 10^{25} \mathrm{yr} (\mathrm{Rolke})$

 TeO_2 exposure

FWHM $@Q_{\beta\beta}$ (physics)

Tab. 2: Systematic uncertainties on $\Gamma_{0\nu}$

Tab. 3: CUORE Results

We combine CUORE results with that of CUORE-0 and Cuoricino (respectively $9.8 \text{ kg} \cdot \text{yr}$ and $19.8 \text{ kg} \cdot \text{yr}$ of 130 Te exposure). and report the most stringent limits on $0\nu\beta\beta$ decay of ¹³⁰Te to date.

Fig. 8: CUORE ROI fit (left) and Negative log likelihood fit (right)

Dataset 1

 $37.6 \text{ kg} \cdot \text{yr}$

 $(8.3 \pm 0.4) \,\mathrm{keV}$

events from 2615 keV^{208} Tl peak.

- \rightarrow Apply data quality Cuts, filter bad events (Stable pre-pulse baseline, No pileup, Pulse shape)
- **Coincidence cuts** to reject multi-site events
- **Calculate efficiency**

Selection Efficiency (%)	Dataset 1	Dataset 2				
Base	95.63 ± 0.01	96.69 ± 0.01				
Pulse shape	91.1 ± 3.6	98.2 ± 3.0				
Anti-coincidence						
Accidentials	99.4 ± 0.5	100.0 ± 0.4				
$\beta\beta$ containment	88.35 ± 0.09					
Tab. 1: CUORE selection efficiency						
	• 00151	$x_7 = 208$ m 1				

 \rightarrow Fit for the lineshape using 2615 keV ²⁰⁸Tl peak, and determine resolution scaling/peak reconstruction offset by fitting to known peaks in the background spectrum. Unblind data

Future

- \succ We are optimizing the detector performance and analysis techniques to reach design goals.
- \succ With a target live-time of 5 years, CUORE is expected to reach a 9×10^{25} yr exclusion sensitivity (90% C.L) and 4×10^{25} yr discovery sensitivity (3σ) .
- \succ The proposed next generation detector with the ability use particle discrimination and increased isotope mass, **CUPID** (**CUORE** Upgrade with **P**article **ID**), aims to fully cover the inverted hierarchy.

Fig. 9: CUORE and CUPID sensitivity, EPJ C 77, 532 (2017)

XXVIII International Conference on Neutrino Physics and Astrophysics 4th-9th June 2018, Heidelberg

