Contribution ID: 139 Type: Poster 0vbb

Results from the CUORE experiment

The Cryogenic Underground Observatory for Rare Events (CUORE) is the first bolometric experiment searching for neutrinoless double beta decay $(0\nu\beta\beta)$ that has been able to reach the one-ton scale. The detector consists of an array of 988 TeO₂ crystals arranged in a compact cylindrical structure of 19 towers. The construction of the experiment was completed in August 2016 with the installation of all towers in the cryostat. Following a cooldown, diagnostic, and optimization campaign, routine data-taking began in spring 2017. In this poster, we present the $0\nu\beta\beta$ results of CUORE from examining a total TeO₂ exposure of 86.3 kg·yr, characterized by an average energy resolution of 7.7 keV FWHM and a background in the region of interest of 0.014 counts/(keV·kg·yr). In this physics run, CUORE placed a lower limit on the 130 Te $0\nu\beta\beta$ half-life of $T_{1/2}^{0\nu} > 1.3 \times 10^{25}$ yr (90% C.L.).

Authorship annotation

The CUORE Collaboration

Session and Location

Monday Session, Poster Wall #38 (Auditorium Gallery Right)

Poster included in proceedings:

yes

Primary author: FUJIKAWA, Brian (Lawrence Berkeley National Laboratory)

Presenters: FUJIKAWA, Brian (Lawrence Berkeley National Laboratory); Mr WAGAARACHCHI, Sachinthya

(UC Berkeley)

Track Classification: Poster (participating in poster prize competition)