p. 1 Study for g-mode oscillations in the Sun using solar neutrino with Super-Kamiokande

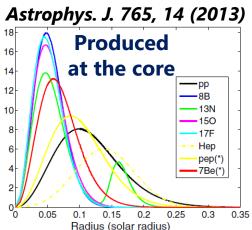
Yuuki Nakano (Kamioka observatory, ICRR, Univ. of Tokyo)

for the Super-Kamiokande collaboration

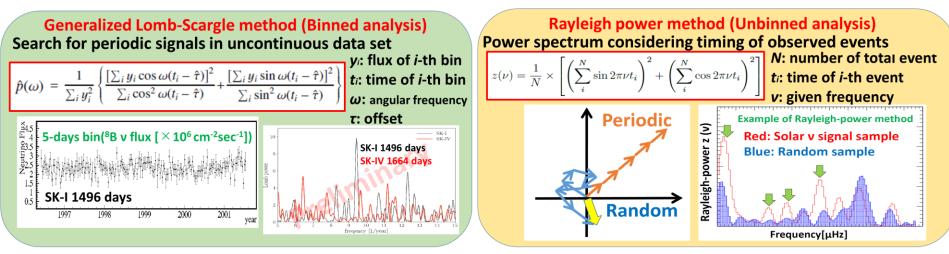
Introduction and motivation

- There are several periodic variations in the Sun. ${}^{
u}$

- (1) **11-years periodic change** of sunspot at the surface.
- (2) Solar oscillations around its equilibrium due to restoring force.


Oscillation	Restoring force	Region	Frequency
p-mode	Pressure	Surface convection	A few mHz (~ 5 minutes)
g-mode (Never detected)	Gravity (Buoyancy)	Core	100-300 μHz (a few hours)

- These variations may affect the solar neutrino production.
 - → Search for periodic variation using solar neutrino in Super-Kamiokande.


^B⁸B neutrino production and g-mode oscillation ^{p. 2}

- Production rate of ⁸B v is depends on temperature. $\rightarrow T^{24-25}$ (*Tcore*~10⁶⁻⁷ K) at the core of the Sun.

- Due to g-mode, temperature (electron density) may fluctuate at the core of the Sun.
- → Flux of ⁸B v may be amplified by a factor of 170. Astrophys. J. Lett. 792, L53 (2014)

- Method to search for g-mode oscillation
- Super-Kamiokande has accumulated ~100k neutrino events so far.
- There are two methods to search for g-mode oscillations in Super-K.

- For more detail: come to my poster. I'm happy to discuss this study with you.