

EXTRACTION OF THE NEUTRINO RATES IN THE STEREO EXPERIMENT

A. Bonhomme¹ on behalf of the **STEREO** collaboration Irfu, CEA, Université Paris-Saclay, 91191 Gif-sur-Yvette, France

The STEREO experiment

- 10 m from the **compact** and **highly** ²³⁵**U enriched** reactor core at ILL (Grenoble, France) \checkmark
- **Segmented** target filled with **Gd-doped liquid scintillator**
- Test the oscillation hypothesis with a **relative comparison** of the $\bar{\nu}_e$ energy distributions \checkmark \rightarrow reduced detection systematics and no reference to an external prediction

Environnemental conditions sensitivity

Correlated background in STEREO

Identified components:

• Muons stopping and decaying in the top of the detector, rejection based on charge collection asymetry

• ${}^{12}C(n,n'){}^{12}C^*$ reactions, where the prompt event is a **mixing** between electronic and proton recoils.

• Multiple neutron captures, the prompt being either a 2.2 MeV γ or a $8 \,\mathrm{MeV} \,\gamma$ cascade.

• Fast neutrons interacting in the liquid before being captured

From background parametrization to ν -rates extraction

The background PSD distribution can be parametrized by a multi-gaussian probability density function (p.d.f.)

$$\mathcal{A}_{bkg}^{corr}(t, \mathrm{E}, \mathrm{cell}) = \mathcal{A}_p \times \left[\frac{\mathcal{A}_e}{\mathcal{A}_p} \cdot \mathcal{M}_\gamma + \mathcal{M}_p \right]$$

 \mathcal{M}_{γ} and \mathcal{M}_{p} are the normalized **electron-recoil** and **proton-recoil** background p.d.f., \mathcal{A}_p controls the size of the latter while $\frac{A_e}{A_e}$ drives the balance between both.

Atmospheric pressure correction is no longer needed: \checkmark auto-coherent treatment using local rescaling to p-recoil background

PSD parameters variations are monitored and fitted along time

Extended Maximum Likelihood (EML) fit **adapted** to low statistics, procedure validated with Monte-Carlo pseudo-experiments.