Perovskite Quantum Dots in Liquid Scintillator

Diana Gooding, for the NuDot Collaboration

Diana Gooding^{1,2}, Julieta Gruszko², Brian Naranjo³, Chris Grant¹, Lindley Winslow² ¹Boston University, ²Massachusetts Institute of Technology, ³UCLA

Toward the Normal Hierarchy in $0\nu\beta\beta$ Searches

_			
	Abundance (%)	Endpoint (MeV)	lsotope
	0.187	4.271	⁴⁸ Ca
Possible future quantum dots	5.6	3.367	¹⁵⁰ Nd
	2.8	3.350	⁹⁶ Zr
	9.6	3.034	¹⁰⁰ Mo
Common quantum dot materials	9.2	2.995	⁸² Se
	7.5	2.802	116Cq
	34.5	2.533	¹³⁰ Te

Canonical Quantum Dot Synthesis

BOSTON

Ucla

Question: Can we maintain energy resolution while increasing background rejection?

KamLAND-Zen Collaboration (Asakura, K. et al.) AIP Conf.Proc. 1666 (2015) 170003 arXiv:1409.0077 [physics.ins-det]

• Goal: Use quantum dots to load isotope, improve Cherenkov detection, and reject backgrounds by event topology.

Elagin, Andrey et al. Nucl.Instrum.Meth. A849 (2017) 102-111 arXiv:1609.09865 [physics.ins-det]

Perovskite Quantum Dots

Ligands

• Right: Perovskite

- Crystal structure is of the form ABX₃, for A (blue) a monovalent cation, B (red) a divalent cation, and X (green) a halide anion.
- Tune the size of the crystal by switching the halide anions.
- Candidate isotopes may be used for the B-site cations.

- Synthesis is as easy as mixing room temperature solvent!
 - As an engineering study, we synthesized lead perovskites, since they are well-studied.

Optical Properties and Light Yield Absorption and Fluorescence Peaks Light Yield at ²²Na Compton Shoulders Spectroscopic Results (relative to Ig/L PPO in Toluene) Material Fluorescence (nm) Absorption (nm) Fluorescence Material 1275 keV 511 keV $H_3C - \dot{N}H_3$ Absorption Br-MAPbBr₃ 435 0.74 415 MAPbBr₃ 0.86 433 0.74 **FAPbBr**₃ 433 FAPbBr₃ 0.85 CsPbl₃

Outlook and Goals

 The bromide perovskites resolve the 1275 and 511-keV Compton shoulders of Na-22 better than the iodide perovskites.

• Top: Fluorescence and absorption curves for smallest (top) through largest (bottom) crystal.

• Right: Sample Compton fits for highest light-yield crystal (top) and lowest (bottom).

• The quantum efficiency of our PMTs drops quickly above 500nm. This explains most of the reduction in light yield.

- We will continue this study with Sn2+. It is a $0\nu\beta\beta$ candidate, and actively studied as a less toxic alternative to Pb.
- Can we move on to more exotic materials and neutrino less double beta decay candidates like ¹⁵⁰Nd, ¹⁰⁰Mo, and ⁴⁸Ca?