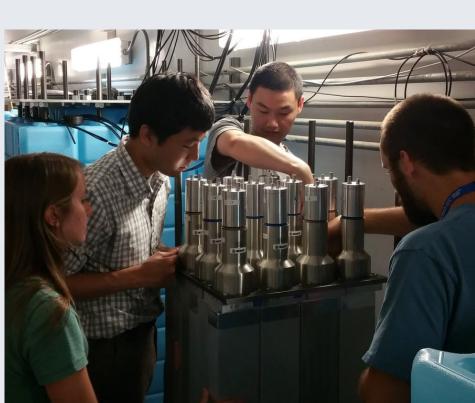

A 185 kg Nal[Tl] Detector for Observing the Charged-Current

Neutrino Interaction on ¹²⁷ Samuel Hedges, Duke University and TUNL

for the COHERENT Collaboration


Duke

VERSIT

Isotope	Reaction Channel	Source	Experiment	Measurement (10^{-42} cm^2)	Theory (10^{-42} cm^2)
² H	$^{2}\mathrm{H}(u_{e},e^{-})\mathrm{pp}$	Stopped π/μ	LAMPF	$52 \pm 18(tot)$	54 (IA) (Tatara et al., 1990)
	${}^{12}C(\nu_e, e^-){}^{12}N_{g.s.}$	Stopped π/μ	KARMEN	$9.1 \pm 0.5(\text{stat}) \pm 0.8(\text{sys})$	9.4 [Multipole](Donnelly and Peccei, 1979)
		Stopped π/μ	E225	$10.5 \pm 1.0(\text{stat}) \pm 1.0(\text{sys})$	9.2 [EPT] (Fukugita et al., 1988).
		Stopped π/μ	LSND	$8.9 \pm 0.3 ({\rm stat}) \pm 0.9 ({\rm sys})$	8.9 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	${}^{12}\mathrm{C}(\nu_e,e^-){}^{12}\mathrm{N}^*$	Stopped π/μ	KARMEN	$5.1 \pm 0.6(\text{stat}) \pm 0.5(\text{sys})$	5.4-5.6 [CRPA] (Kolbe et al., 1999b)
		Stopped π/μ	E225	$3.6 \pm 2.0(tot)$	4.1 [Shell] (Hayes and S, 2000)
		Stopped π/μ	LSND	$4.3\pm0.4(\mathrm{stat})\pm0.6(\mathrm{sys})$	
	${}^{12}C(\nu_{\mu},\nu_{\mu}){}^{12}C^{*}$	Stopped π/μ	KARMEN	$3.2 \pm 0.5(\text{stat}) \pm 0.4(\text{sys})$	2.8 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	${}^{12}C(\nu,\nu){}^{12}C^*$	Stopped π/μ	KARMEN		10.5 [CRPA] (Kolbe <i>et al.</i> , 1999b)
	$^{12}C(\nu_{\mu},\mu^{-})X$	Decay in Flight	LSND	$1060 \pm 30(\text{stat}) \pm 180(\text{sys})$	1750-1780 [CRPA] (Kolbe et al., 1999b)
					1380 [Shell] (Hayes and S, 2000)
					1115 [Green's Function] (Meucci et al., 2004)
	$^{12}C(\nu_{\mu}, \mu^{-})^{12}N_{g.s.}$	Decay in Flight	LSND	$56 \pm 8(stat) \pm 10(sys)$	68-73 [CRPA] (Kolbe et al., 1999b)
		, i			56 [Shell] (Hayes and S, 2000)
⁵⁶ Fe	${}^{56}\text{Fe}(\nu_e, e^-){}^{56}\text{Co}$	Stopped π/μ	KARMEN	$256 \pm 108(\text{stat}) \pm 43(\text{sys})$	264 [Shell] (Kolbe et al., 1999a)
⁷¹ Ga	$^{71}\text{Ga}(\nu_e, e^-)^{71}\text{Ge}$	⁵¹ Cr source	GALLEX, ave.	$0.0054 \pm 0.0009(tot)$	0.0058 [Shell] (Haxton, 1998)
		⁵¹ Cr	SAGE	$0.0055 \pm 0.0007(tot)$	
		³⁷ Ar source	SAGE	$0.0055 \pm 0.0006(tot)$	0.0070 [Shell] (Bahcall, 1997)
127 _T	$127 I(n - 127 V_{0})$	Ct. 1 /	LOND	$0.84 \pm 0.1(stot) \pm 0.5(sus)$	210 210 (Oueri perticle) (Engel et al. 1004)

The NalvE Detector

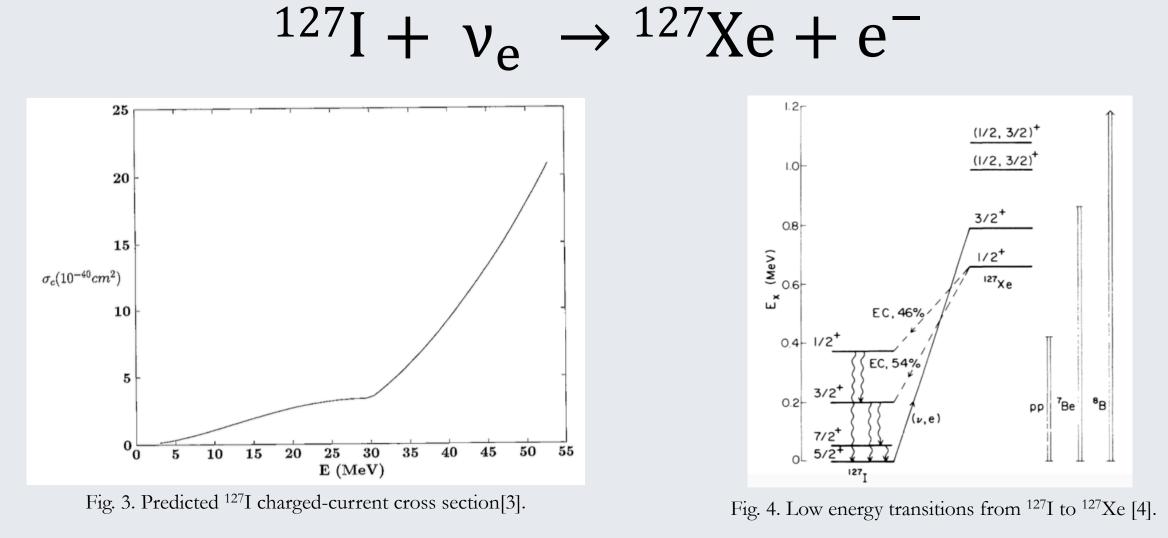
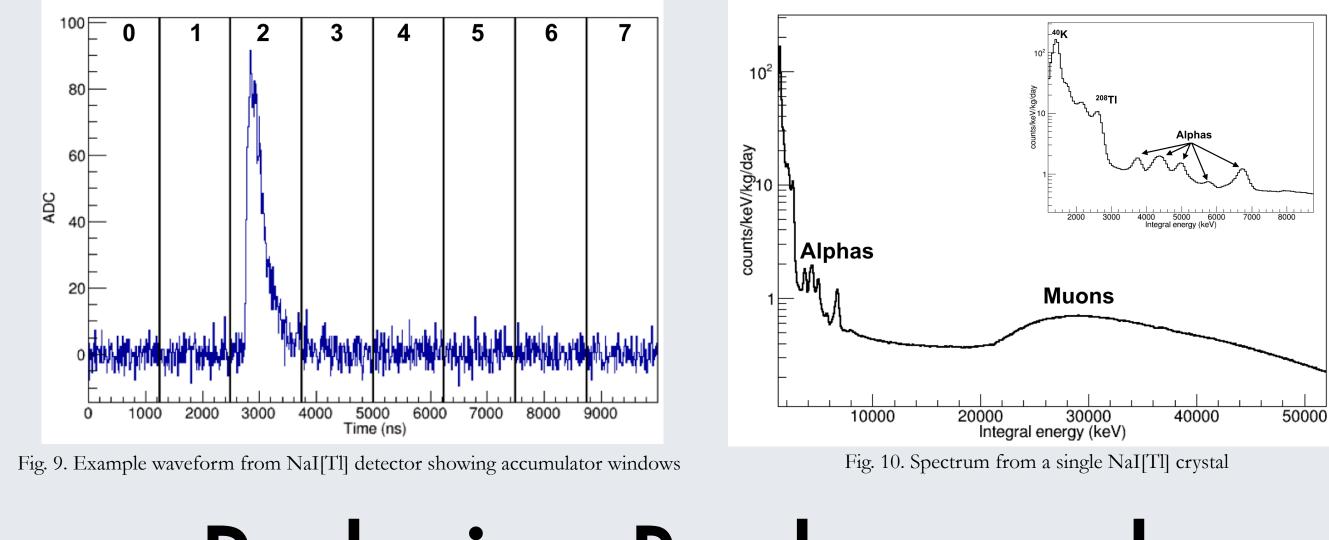


Fig. 1. Neutrino sources as a function of energy [1].Fig. 2. Neutrino-nucleus cross sections for low energy terrestrial sources [2].

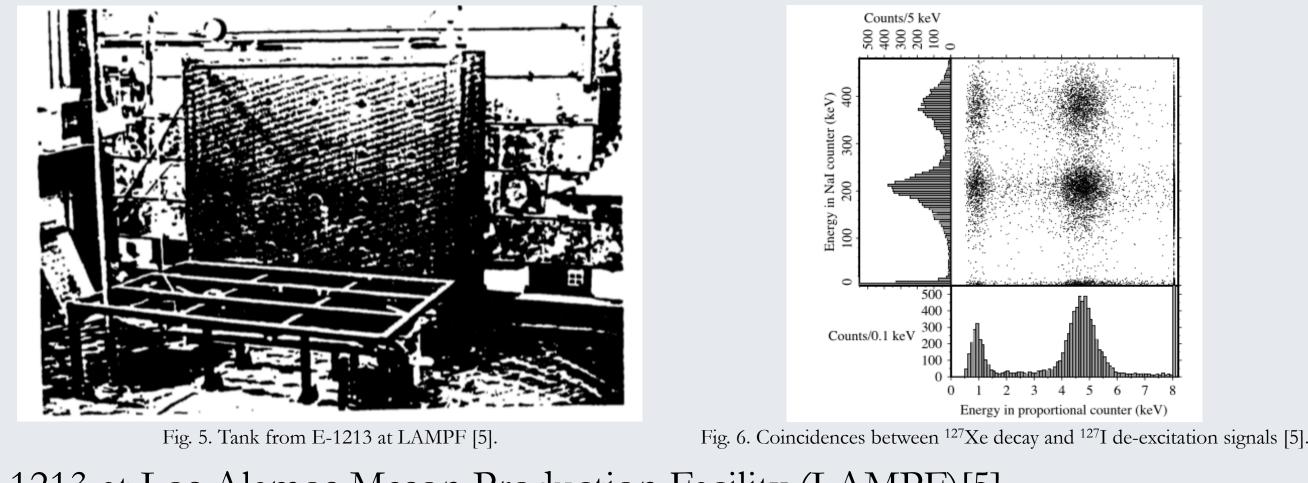
- Charged-current neutrino-nucleus measurements test nuclear models, g_A quenching measurement with neutrinos
- Necessary for proposed charged-current supernova and solar neutrino detectors
- Few measurements exist at these energies, large uncertainties

Charged-Current Interaction



- ¹²⁷I charged-current proposed for solar, supernova neutrino detection by Haxton [4]
- Threshold $E_{\nu_e} \approx 789$ keV, particle emission threshold in ¹²⁷Xe ≈ 7.23 MeV
- Theoretical calculation by Mintz and Pourkaviani[3] for stopped-pion source ν_e

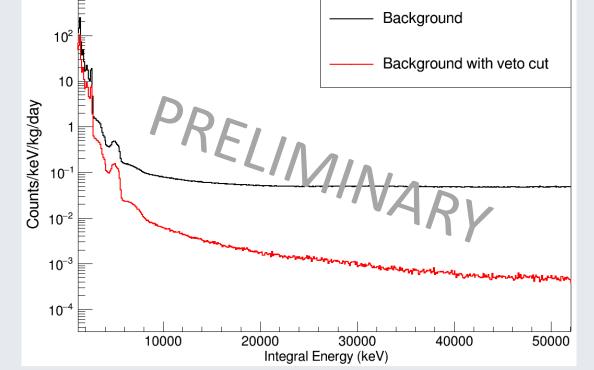
Previous Measurement



- NaIvE (NaI v-Experiment) consists of twenty-four 7.7 kg NaI[Tl] scintillators deployed ~20 m from the SNS target
- Detectors trigger based on digitizer logic, SNS timing signals digitized as well, timing correlations done in software analysis
- Waveforms separated into eight equally-spaced 1250 ns windows, counts integrated
- 100 ns window used to identify coincidences between detectors

Reducing Backgrounds

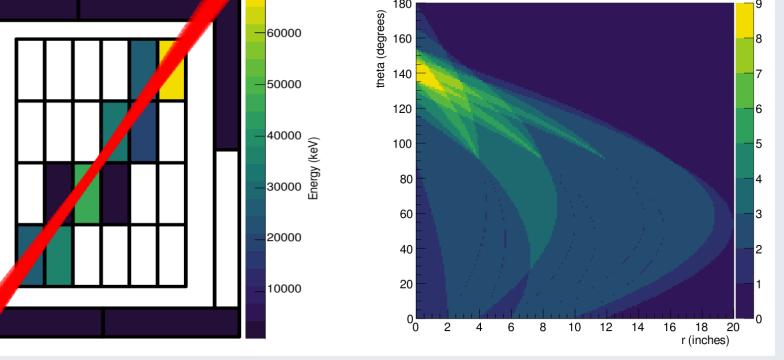
- Largest background for charged-current signal come from cosmic muons
- Vetos deployed in fall 2017, large improvement in S/B (signal acceptance still under



- E-1213 at Los Alamos Meson Production Facility (LAMPF)[5]
- Radiochemical approach, required final state to be ¹²⁷Xe (no particle emission)
- Used coincidences from ¹²⁷Xe decays to calculate amount ¹²⁷Xe produced ${}^{127}Xe \rightarrow {}^{127}I^* + \gamma$ (203, 375 keV) ${}^{127}I^* \rightarrow {}^{127}I + e^- (\sim 0.9, 4.7 \text{ keV})$
- Reported flux-averaged cross section over stopped-pion source v_e spectrum of $\sigma = 2.84 \pm 0.91$ (stat) ± 0.25 (sys) $\times 10^{-40}$ cm²

Neutrino Production at the SNS

- investigation)
- Steel plates between vetos and NaI[Tl] to avoid vetoing charged-current signal
- Tracking algorithms also being investigated to identify muons [7]



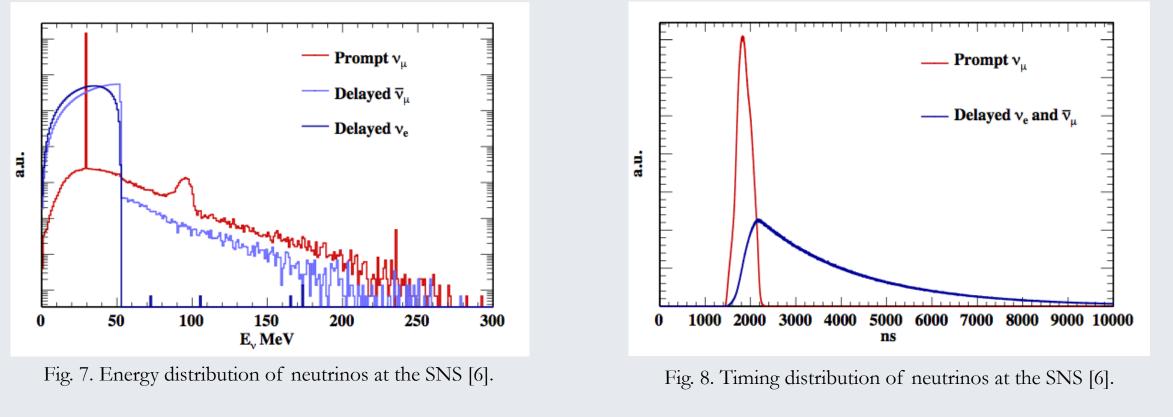

Fig. 11. Spectrum from NaIvE detector in delayed window with veto cut

Fig. 12. Left: Energy deposited in NaI[Tl] detectors with reconstructed track. Right: Hough space for track

Future Plans

- Beam restarted in May 2018, operating at higher power
- Spallation Neutron Source (SNS) creates neutrons through stopped-pion decay
- 60 Hz pulsing, \sim 1 µs long pulses, energy similar to supernova neutrinos
- Electron neutrinos delayed with respect to beam, max energy of $\sim 52 \text{ MeV}$
- Typical flux at 20m: $\Phi \approx 1.4 \times 10^7 \nu_e$ / cm² / sec

 References:
 [1] A. de Gouvea et. al, arXiv:1310.4340 (2013)
 [5] J.R. Distel, et. al, Phys. Rev. C 68 (2003)

 [2] J.A. Formaggio and G.P. Zeller, arXiv:1305.7513 (2013)
 [6] D. Akimov, et. al, arXiv:1509.08702 (2015)

 [3] S.L. Mintz and M. Pourkaviani, Nuc. Phys. A 584 (1995)
 [7] R.O. Duda and P.E. Hart, Comm. of the ACM, 15 (1972)

 [4] W.C. Haxton, Phys. Rev. Lett. 60 (1988)
 [7] R.O. Duda and P.E. Hart, Comm. of the ACM, 15 (1972)

- Deam restarted in ring =010, operating at ingrief power
- Preliminary measurement with NaIvE, improve statistics with tonne-scale detector
- Plan to simultaneously measure charged-current interaction on ¹²⁷I and coherent elastic neutrino-nucleus scattering (CEvNS) on ²³Na using dual-output base
- Dual-output base will allow a ~3 keV threshold in low-energy channel, measure up to ~55 MeV in high-energy channel
- Shielding design and simulation underway

I would like to thank the Consortium for Nonproliferation Enabling Capabilities (CNEC), the members of the Barbeau group, our collaborators on COHERENT, the staff at TUNL and the Duke physics machine shop.

