NuWro - neutrino Monte Carlo event generator

Jan Sobczyk, Kajetan Niewczas*, Tomasz Golan, Cezary Juszczak Institute of Theoretical Physics, Wrocław University, Poland

*also at Department of Physics and Astronomy, Ghent University, Belgium

Abstract

NuWro Monte Carlo event generator is described and then used in investigation of MEC events.

NuWro

NuWro is a Monte Carlo neutrino event generator under development at Wrocław University since ~ 2006 [1].

A search for MEC events

MEC events are supposed to be a significant fraction of CC0 π events with a signal defined as no pions and arbitrary number of nucleons in the final state.

- Open source code, repository at https://github.com/NuWro/nuwro
- \blacksquare Covers energy range from $\sim 100~{\rm MeV}$ to TeV region.
- Flux and detector interfaces allow for a use in neutrino experiments.

NuWro physics models

- QEL: $\nu_I n \rightarrow I^- p$
- RES, $W \leq 1.6$ GeV: mostly single pion production via $\nu_l N \rightarrow l^- \Delta N', \quad \Delta \rightarrow \pi N''$
- \blacksquare DIS, $W>1.6~{\rm GeV}$
- COH: coherent pion production

NuWro FSI model

The basic picture is that of impulse approximation. Neutrino-nucleus scattering is a two-step process. Primary interaction on quasifree nucleons is fol-

Example: MINERvA experiment results [6].

One may try to learn about MEC contribution from CC0 π data from MINERvA, T2K, ν_{μ} and $\overline{\nu}_{\mu}$ measurements, but there is a lot of ambiguity.

Proton observables

It seems necessary to study proton observables. Example: T2K measurement of CC0 π without a proton in an acceptance region [7].

lowed by hadron rescatterings.

How pion cascade may change final state particles.

- A critical ingredient to compare to experimental data.
- NuWro includes FSI effects for pions and nucleons.
- a) Pion rescatterings (and absorption) described by Oset et al model [2]
- b) Nucleon rescatterings described
 by Pandharipande-Pieper model
 [3]. Nucleon-nucleon correlations
 effects will be included.

MEC mechanism

Contact and $\mathit{pion-in-flight}$ diagrams

In case of neutrino nucleus scattering interaction can occur on nucleonnucleon pairs via two body current mechanism.

Final remarks

- A lot of interest in MEC contribution to overall cross section
- Theoretical models predictions are quite different.
- There is a lot of new neutrino scattering data, also with proton detection, one must use MC generator to analyze results and learn about the

 $\Delta\textsc{-Meson}$ Exchange Current diagrams

Ab initio computations for electron scattering show that the mechanism must be include to describe quasielastic peak region.

NuWro MEC model

Contribution to lepton inclusive cross section taken from Valencia model [4]

Hadronic part described by "phase space" model [5].

Uniform distribution of nucleons in the center of mass frame.

MEC contribution.

References

[1] T. Golan, C. Juszczak, Jan T. Sobczyk, Phys.Rev. C86 (2012) 015505.

[2] L. L. Salcedo, E. Oset, M. J. Vicente-Vacas, and C. Garcia-Recio, Nucl. Phys. A484 (1988) 557.

[3] V.R. Pandharipande and S.C. Pieper, Phys. Rev. C45 (1992) 791.

[4] J. Nieves, I. Ruiz Simo, and M. J. Vicente Vacas, Phys. Rev. C83 (2011) 045501.

[5] J.T. Sobczyk, Phys.Rev. C86 (2012) 015504; a figure - credit to T. Katori.

[6] D. Ruterbories [MINERvA], a presentation at NuInt2016, Toronto.

[7] T2K collaboration, arXiv:1802.05078 [hep-ex]