Searching for Heavy Neutrinos in Same-Sign Dilepton Events at $\sqrt{s} = 13$ TeV Using the CMS detector

[CMS-EXO-17-028] SungBin Oh, Jaesung Kim, Sihyun Jeon, Haneol Lee, John Almond, Un-ki Yang **Seoul National University** with UC Riverside

I. Overview

The CMS experiment has performed searches for heavy neutrinos at the LHC. We present the studies of heavy neutrino searches (Majorana type) in the same-sign dilepton plus jets channel using 2016 proton-proton collision data at $\sqrt{s} = 13$ TeV with integrated luminosity 35.9 fb⁻¹.

Non-zero mass

II. Introduction

• Non-zero masses of ν

III. CMS detector and data selection

• The CMS detector

- The discovery of neutrino oscillations
- Clear evidence for physics beyond the Standard Model (SM)
- See-saw mechanism
 - The smallness of the SM neutrinos (m_{ν}) is explained by a new massive neutrino state N, $m_{\nu} pprox rac{y_{
 u}^2
 u^2}{2}$
 - In this model, both ν and N are Majorana type

Phys. Rev. Lett. 44. 912

"For the greatest benefit to man alfred Nobel

2015 NOBEL PRIZE IN PHYSICS

Takaaki Kajita

Arthur B. McDonald

Phys. Rev. Lett. 81. 1562

- Search for Majorana neutrino at the LHC
- Some see-saw models predict heavy neutrinos at 100-1000 GeV, if $m(\nu_e) \sim 0.1 \text{ eV}$
- Two main production mechanisms for heavy Majorana neutrino are

- The same-sign dilepton and jets final state with no MET
- Violates the lepton-number conservation
- Previous results in CMS at $\sqrt{s} = 8$ TeV and trilepton channel $\sqrt{s} = 13$ TeV JHEP 04 (2016) 169
 - 16) 169 19.7 fb⁻¹ (8 TeV) arXiv:1802.02965

🛸 muon system

- e/μ lepton P_T precision is 0.5% @ 50 GeV
- Jet P_T precision is 10% @ 100 GeV
- 40 MHz event rate $\rightarrow \sim 100$ kHz after level 1 triggers $\rightarrow \sim 1$ kHz after high level triggers (HLT)
- Event selection
 - HLT : un-prescaled triggers with two isolated leptons (e/μ)
 - Two same-sign leptons (e/μ) with CMS standard jets (j, AK4) and wide cone jets (J, AK8)
 - Two signal regions (SR) divided by m_N
 - Low mass region ($m_N < m_W$) : ~ 0.2 to 3 % signal efficiency
 - SR1 : N(j) \geq 2. W_{jet} is defined as two jets where m(jj) closest to m_W
 - SR2 : N(j) = 1. W_{jet} is defined as the jet NEW!!
 - No b-tagged jet, m(ll W_{iet}) < 300 GeV, and E_T^{miss} < 80 GeV
 - High mass region $(m_N > m_W)$: ~ 0.5 $(m_N = 85 \text{ GeV})$ to 40 $(m_N = 1 \text{ TeV})$ % signal efficiency
 - SR1 : N(J) = 0 and N(j) \geq 2. W_{jet} is defined as two jets where m(jj) closest to m_W
 - SR2 : N(J) ≥ 1 . W_{jet} is defined as a fat jet where m(J) closest to m_W NEW!!
 - No b-tagged jet, m(W_{jet}) < 150 GeV, and $\frac{(E_T^{miss})^2}{S_T}$ < 15 GeV where S_T is scalar sum of leptons P_T , jets' P_T and E_T^{miss}
 - Additional optimized event cuts are applied for each heavy neutrino mass point

NEW!!

No significant excess of events beyond the standard model background prediction is found

V. Backgrounds

- Fake leptons: at least one lepton originated from B decay or generic jets
 - Examples of fake leptons from generic jets
 - Electron : $\pi^0 \rightarrow \gamma \gamma$ decay with nearby track, photon conversion
 - Muon : K^{\pm} decay into muon, punch through of charged hadrons to muon system
 - Estimation
 - Measure T/L, where T is number of leptons passing tight ID and L is number of leptons passing loose ID, after subtracting prompt lepton contribution by Monte-Carlo (MC) simulation
 - By using T/L, we can estimate fake background with TL and LL dilepton data events while L leptons failed tight criteria
 - Systematics $\sim 30 \%$

- Results for ee, $e\mu$, and $\mu\mu$ channels
- 95% CL limits are obtained using cut and count method

- Different loose lepton ID criteria, detector effects, and varying event selection cuts used to define T/L measuring region are included
- Tested by MC closure test, comparison between data and expected background in fake lepton dominant control region
- Charge mis-measurement (CM) of leptons
 - The probability is very small for muons Ignore!
 - Estimation for electrons
 - CM probability is estimated from MC simulation of DY events as function of $1/P_T$ and $|\eta|$
 - Validated with observed $e^{\pm}e^{\pm}$ event yield and expected $e^{\pm}e^{\pm}$ yield by applying CM probability to $e^{\pm}e^{\mp}$ events, after requiring m(ee) to be $|m(ee) - m_z| < 15$ GeV
 - Difference in number of observed and expected $e^{\pm}e^{\pm}$ events is corrected by scale factors (SF) for CM probability
 - Systematics < 4% uncertainty on total background
 - MC closure test, half sample test, and small statistic effect for high P_T electrons
 - Uncertainty on SF is measured by varying Z boson mass window, and P_T cut of electrons
- Irreducible background from SM production
 - VV, VVV, $t\bar{t}V$ (V : vector bosons), $W^{\pm}W^{\pm}qq$, and double-parton scattering by MC simulation
 - Three main prompt backgrounds (WZ, ZZ, and $Z\gamma$) are normalized in data from control regions
 - Systematics on cross sections and detector effects are estimated ~ 13 to 45 %

WI. Conclusion

- Analysis in same-sign dilepton with jets channel @ 13 TeV data has been performed
- World best direct limit on $|V_{\mu N}|^2$ for $m_N > 100$ GeV and on $|V_{eN}|^2$ for $m_N > 150$ GeV
- Unique searching for heavy neutrino at same-sign electron-muon channel with 13 TeV data

