Transparency monitor for the filling system in JUNO Heike Enzmann, on behalf of the JUNO Collaboration

Neutrino 2018, XXVIII International Conference on Neutrino Physics and Astrophysics

JUNO

The JUNO Detector

20kt of liquid scintillator

Acrylic Sphere

- \rightarrow 35m diameter of inner sphere
- 16,000 PMTs on stainless steel latticed shell
- $\rightarrow \geq 75\%$ coverage
- Water Cherenkov Detector

Myon Top Tracker

LAB

passing charged

- Resolution goal: $\leq 3\% / \sqrt{E(MeV)}$
- \rightarrow High transparency imperative!
- \rightarrow Precise knowledge of light output needed!

Schematic of the Jiangmen Underground Neutrino Observatory (JUNO).

The Goal

- Determination of the neutrino mass hierarchy (sign of Δm_{32}^2)
- Precision measurement of solar oscillation
 - Parameters θ_{12} , Δm_{21}^2 and atmospheric oscillation parameter Δm_{32}^2 to better than 1%

Why Monitor the Transparency

- An energy resolution of at least $3\%/\sqrt{E(MeV)}$ is needed to resolve differences between NH and IH • Energy resolution depends predominantly on the PMT coverage, the light yield and transparency of the liquid scintillator
- In the run-up to JUNO the LS transparency is mainly measured in small scaled set-ups (value might change at larger distances)
- Transparency might also change over time due to aging effects
- Monitoring of the liquid scintillator transparency is mandatory

Flours absorb excitation energy and emit photons at lower energies/ higher wavelengths \rightarrow Suppression of re-absorption and re-emission in the detector

knowledge of characteristic lengths necessary for correct signal evaluation:

> attenuation Λ_{Scat} scattering

- Filling and Purification Online Purification The filling System Purification 1. Distillation tower 2. Aluminum Column 3. Water Extraction 20 kton 4. Gas Tower Filling and purification system -a: Italy LAB, ISORCHEM 113 0.1950 -b: Commercial LAB from Nanjing, China **Liquid scintillator purity** -c: Speical LAB from Nanjing, China 0.1450 • Very high purity necessary -d: Italy LAB, HYBLENE 113 Q 0.0950 • Delivered LAB not good enough -e: Nanjing LAB purified by Al2O3
 - Purification gives desired quality

Monitoring Liquid Scintillator Transparency

Monitoring of LS purity via the Absorption length

Purpose:

Monitoring of the Ls purity during filling

- Test LAB quality of every new batch
- On site
- Quasi-continuous measurement
- No LS has to be removed from system

Approach:

Measuring the absorption over tow different lengths

Liquid

- Optical Components

- \rightarrow Filled from bottom
- \rightarrow Nitrogen atmosphere
- CCD Camera

Measurement

1. Tubes filled form bottom

Test Measurements

- First test measurements were successful
- Cameras are stable and have good linearity
- Calibrate for dark noise
- Laser stable enough
- Long time fluctuations not a problem
- Systematics are under control
- Effect of mirror and beam-splitter considered
- Setup mostly stable
- Strong vibrations can cause issues

- Parallel measurement
- Identical light-sources
- Almost identical light path
- \rightarrow Reduces systematics

2. Short pause for settling 3. Measurement

Parallel Measurement

Reduce Systematics • Effect of surfaces not relevant • Slight fluctuations in laser can be neglected

• Chang of laser intensity over longer time nor relevant

Fig. 1: Test setup for characterization of components. Here with the mirror Fig. 2: Picture of laser using CCD Camera after passing through full test-setup.

