Local density of relic neutrinos and its implications for PTOLEMY

Pablo Fernández de Salas

IFIC (CSIC - Universitat de València) NEUTRINO 2018

Based on: P. F. de Salas et al., JCAP 1709, 034 (2017), [1706.09850] In collaboration with S. Gariazzo, J. Lesgourgues and S. Pastor

Local density of relic neutrinos

- At least two relic neutrinos are non-relativistic today ($T_{CVB} = 0.16$ meV)
- They clusterize under large gravitational potentials (e.g. the Milky Way)
- N-one-body simulations
- Only gravitation matters
- Matter (and neutrino) evolution not affected by neutrinos
- We follow the evolution of DM and baryons distrib.

Implications for PTOLEMY

- PonTecorvo Observatory for light, Early-Universe, Massive-neutrino Yield
- Relic neutrino capture in tritium:

 $\nu_j + {}^{3}\mathrm{H} \rightarrow {}^{3}\mathrm{He} + e^{-}$

- Peak at $\sim 2m_{\nu}$ from true β -decay endpoint
- Energy resolution comparable to m_{ν}

masses (meV)	matter halo	overdensity f_c {best fit b	$ \Gamma^{\rm D}_{{ m C} u{ m B}} ({ m yr}^{-1})$ est fit + barvons	$\Gamma^{M}_{C\nu B} (yr^{-1})$
any	any	no clustering	4.06	8.12
degenerate	NFW	2.18 2.44 2.88	8.8 9.9 11.7	17.7 19.8 23.4
$m_{\nu_{1,2,3}} = 150$	Einasto	1.68 1.87 2.43	6.8 7.6 9.9	13.6 15.1 19.7
minimal (IO)	NFW	1.15 1.18 1.21	4.07 4.08 4.08	8.15 8.15 8.16
$m_{\nu_3} = 60$	Einasto	1.09 1.12 1.18	4.07 4.07 4.08	8.14 8.14 8.15
minimal (NO)	NFW	1.15 1.18 1.21	4.66 4.78 4.89	9.31 9.55 9.77
$m_{\nu_{1,2}} = 60$	Einasto	1.09 1.12 1.18	4.42 4.54 4.78	8.84 9.07 9.55