

Status of the AMoRE experiment

SeungCheon Kim Center for Underground Physics, Institute for Basic Science, Daejeon, Korea on behalf of the AMoRE collaboration

AMoRE experiment

Advanced Mo-based Rare process Experiment Search for neutrinoless double beta (0vββ) decay of ¹⁰⁰Mo Double β decay

- => In most naturally occurring even-even nuclei, single β decay is forbidden. But, for a large number of them,
 - double β decay is allowed.

0vββ source :100Mo isotope

=> relatively high Q-value (3034 keV), shorter half-life expected => high natural abundance of 9.74 %

Detector (pilot) : ⁴⁰Ca¹⁰⁰MoO₄ crystal with

low temperature (LT) phonon and photon sensors

- => Scintillating crystal, Source = Detector
- => 100Mo enriched (> 95 %), 48Ca depleted (4.27 MeV, < 0.001 %)
- => Excellent energy resolution with LT sensors
- => Demonstrated excellent α/β separation with phonon sensor
- => Simultaneous phonon and photon detection allows further background reduction

AMoRE at pilot phase

Yangyang (Y2L) underground lab

Background identification

=> Stycast (Epoxy), PCB, pin connectors near crystal seem to generate significant background.

Background rejection in ROI

- $=>\beta$ -like event selection => ²⁰⁸Tl event rejection after ²¹²Bi a (6.2 MeV) => Muon veto, multiple hit
- rejection => Preliminary background level: 0.1 - 1 (cnts/keV/kg/yr)

Still, improving

Why 0vßß?

sector

- =>Unambiguous signature for Majorana neutrino
- =>Lepton number non-conservation
- =>Absolute neutrino mass scale $[T^{0\nu}_{1/2}]^{-1} = G^{0\nu} |M_{0\nu}|^2 \langle m_{\beta\beta} \rangle^2$

Preliminary performance

Crystals	2.6 MeV FWHM energy resolution (keV)	DP Light/Heat	DP Mean Time	DP Rise Time
SB28(0.20kg)	13.0	12.8	22.0	20.2
\$35(0.25kg)	12.4	18.8	11.3	9.4
SS68(0.35kg)	20.2	16.2	6.0	5.7
SE01(0.35kg)	18.2	15.7	21.8	19.3
SB29(0.40kg)	16.0	14.1	8.6	9.8
SE02(0.34kg)	11.7	9.6	20.5	18.1

AMoRE-I. II

migid MS + SS

AMoRE-I

- => 13 ⁴⁰Ca¹⁰⁰MoO₄ crystals
- +5 other molybdate (XMoO) crystals (X:Li, Na, Pb, etc)
- => Reducing the background identified at pilot phase
- => 6 kg, 18 crystals, 3+ years data taking

AMoRE-II

- => target mass: 100 kg of 100 Mo isotope, 5 years data taking
- => Selecting best molybdate crystals for scaling up
- => Exploiting the new underground lab in Jeongseon

Sensitivity Goal

Crystals	AMoRE-Pilot	AMoRE-I	AMoRE-II
mass	1.9 kg	~5 kg	~200 kg
Channels	12	36	1000
Background (cnts/keV/kg/yr)	0.01	0.001	0.0001
Sensitivity (T _{1/2}) (year)	~10 ²⁴	~10 ²⁵	~5 x 10 ²⁶
Location	Y2L	Y2L	New lab
Schedule	2016-2018	2018-2021	2021

