SNO+ Tellurium Loading for **Neutrinoless Double Beta Decay**

Szymon Manecki

for the SNO+ Collaboration

szymon.manecki@gueensu.ca

SNO+ is a new experiment that incorporates the existing SNO detector. By replacing the heavy water used in the SNO detector with a tellurium loaded liquid scintillator, the experiment will focus on the search for neutrinoless double beta decay. In order to enable this search, novel metal-loading and purification techniques capable of achieving the required levels of radiopurity and optical quality have been developed.

Design and Location

Double Beta Decay Physics

SNO+ will be a kilo-tonne scale liquid scintillator-based experiment located at SNOLAB in Sudbury, Canada. The main advantages of this technology for the $(0 \cup \beta \beta)$ physics are:

- High Te target mass at fractional loading (1.3 tonnes of ¹³⁰Te @ 0.5%Te by mass) \bullet
- Self-shielding and active discrimination (due to a large detector volume)
- Low internal backgrounds (effective purification techniques)

8.

.

0.4% in LAB

"Polymerization" (dimeric and poly-nuclear complex structures formed)

Purification and Production Techniques

LAB Target Levels U: 10⁻¹⁷ g/g Th: 10⁻¹⁸ g/g The TeDiol Production Plant

The Telluric Acid Plant

TeDiol Scintillator Properties

Light Yield Pulse height spectra from ⁹⁰Sr source

Timing Profiles

Particle Discrimination

Statistical discrimination for $\beta/\alpha @ 0.5\%$ Te

Cosmogenic daughters of Tellurium: (⁶⁰Co, ^{110m}Ag, ¹²⁶Sn, ⁸⁸Zr, ⁸⁸Y, ¹²⁴Sb) Reduction factor of $\sim 10^4 - 10^6$

Butanediol target requirement: ²³²Th 3.5x10⁻¹⁵ g/g, ²³⁸U 3.5x10⁻¹⁴ g/g Reduction factor of ~10⁵ w.r.t. raw BD

DDA amine target requirements: ²³²Th 2x10⁻¹⁴ g/g, ²³⁸U 5x10⁻¹⁵ g/g Reduction factor of ~10⁵ w.r.t. raw DDA

Loading Technique Mature and Well-tested

Acrylic compatible & Stable

Complex stable and tested under a variety of conditions

Compatible with acrylic and materials of the experiment

Robust synthesis technique developed

LAB plant commissioning – first LAB fill imminent

Telluric Acid plant entering commissioning phase

TeDiol plant construction underway

U of Alberta, Queen's U TRIUMF, SNOLAB

Lancaster U, U of Liverp U of Oxford, U of Sussex

boratório de Instrumentação e Física xperimental de Partículas

Universidad Nacional Autónoma de México

