Measurement of neutrino interactions on water and hydrocarbon with a 3D-grid detector in the WAGASCI experiment K. Kin, N. Kukita, S. Tanaka, Y. Seiya, K. Yamamoto Osaka City University / On behalf of the WAGASCI Collaboration

XXVIII International Conference on Neutrino Physics and Astrophysics (NEUTRINO2018) @Kongresshaus of Heidelberg, Germany (4-9 June 2018)

2. Neutrino interaction

Charged Current (CC) interaction • Dominant neutrino interaction at T2K/WAGASCI energy (~0.6 GeV). • Easily reconstruct neutrino energy from information of charged lepton. 0.0 (CC Quasi- Elastic) $\begin{array}{c} \underbrace{\mathbf{v}_{\mu} + \mathbf{n} \rightarrow \mu^{-} + \mathbf{p}}_{\boldsymbol{\theta}_{\mu}} & \underbrace{(\mathbf{E}_{\mu}, \mathbf{p}_{\mu})}_{\mathbf{p}} & E_{\nu} = \frac{m_{N} E_{\mu} - m_{\mu}^{2}/2}{m_{N} - E_{\mu} + p_{\mu} \cos \theta_{\mu}} \end{array}$ Signal interaction in our analysis

Beam axis (INGRID)	mo	nonitor		
Near-detectors	1	Systematic arror	Frror	Error
Two types of off-axis detectors		source	$(\boldsymbol{\nu}_{\boldsymbol{\mu}} \rightarrow \boldsymbol{\nu}_{\boldsymbol{\mu}})$	$(\boldsymbol{\nu}_{\mu} \rightarrow \boldsymbol{\nu}_{e})$
• ND280 (CH target + H_2O target)				μ
Acceptance : forward scattering		v flux & cross-section	2.9%	4.2%
• Super-Kamiokande (H ₂ O target)		(Non-cancelled)		
Acceptance : 4π		Total	5.0%	5.4%

Reduce this uncertainty by measuring H_2O/CH neutrino cross-section ratio within a 3% accuracy using a detector with a large angular acceptance \rightarrow WAGASCI experiment (J-PARC T59)

for WAGASCI experiment.

n

d

11

- Track position difference < 150 mm <u>Side view</u>

- Good agreement between data and MC

• Upstream veto cut

To reject neutrino events more upstream than water module (ex. from wall of detector hall)

• Two upstream planes (10 cm)

• Fiducial volume cut

To select neutrino events inside the detector

- $80 \times 32 \text{ cm}^2$
- Mass in Fiducial volume: 200 kg

To be added...

- Track reconstruction (3D)
- The number of tracks
- Particle ID
- Track angle cut

 ν_{μ}

•

μ

32 cm

Summary

Side view

WAGASCI experiment at J-PARC

•We aim to reduce T2K systematic errors in the oscillation analysis. • Total 8.51×10^{20} POT collected with 96.8% efficiency so far. ~ 2000 signal events are expected to be observed.

•Hit efficiency and reconstruction efficiency are in good agreement between data and MC. •Further MC studies are in progress.