Carsten Rott and Seongjin In on behalf of the IceCube Collaboration

Abstract

Cosmic ray interactions with the solar atmosphere are expected to generate energetic neutrinos that might be observable with neutrino telescopes, such as IceCube. These so called solar atmospheric neutrinos are expected to have a harder energy spectrum compared to those generated in the Earth atmosphere. The difference originates from the lower atmospheric density of the Sun, which allows secondary particles to decay rather than to reinteract. We present the sensitivity of the first search for solar atmospheric neutrinos, using seven years of data collected with IceCube. To distinguish signal from backgrounds we perform a likelihood analysis using directional and energy spectral information. The analysis method and optimization will be introduced and sensitivities presented

Solar Atmospheric Neutrinos

$\rho(h)=\rho_{0} e^{-h / h_{0}}, \quad \begin{aligned} & \text { At the Earth surface, } \\ & \rho \approx 1.2 \cdot 10^{-3}\left(\mathrm{~g} / \mathrm{cm}^{3}\right)\end{aligned}$

Solar atm. neutrinos are generated when cosmic rays produce particle showers in the Solar atmosphere

The first flux estimation dates back to Seckel Stanev Gaisser (1991) ${ }^{[3]}$
Below $\mathrm{O}(100 \mathrm{GeV})$ significant dependence on solar magnetic fields

The solar atmospheric neutrino flux has been predicted in several independent works [2,3,4,5] Models are in good agreement and we choose two benchmark models for this analysis

Likelihood Analysis \& Sensitivities in IceCube as a signal
Region of interest $=\theta<5^{\circ}$ from the Sun, $E=\left[10^{2.2}, 10^{7.2}\right] \mathrm{GeV}$ (IC79-2010/2011)
$=\left[10^{2}, 10^{7}\right] \mathrm{GeV}($ IC86-201 $1 / 2016)$
We estimated the sensitivity as using maximum LLH method
Likelihood function $(L(E, \theta \mid \mu)$) is defined as a function of energy (E) and angular distance (θ) from the Sun

$$
\left.L(E, \theta \mid \mu)=(\mu / N) * p_{s i g}(E, \theta)+(1-\mu / N) * p_{b k g}(E, \theta)\right)
$$

where $N=$ total number of events in pseudo experiment, $\mu=$ number of signal events $p_{s i g}(E, \theta)=\frac{1}{2 \pi \sigma^{2}} \exp \left(-\frac{\theta^{2}}{2 \sigma^{2}}\right) \cdot p_{\text {sig }}^{E}(E, \theta)$
$p_{\text {bigg }}(E, \theta)=\frac{2 \pi \sigma^{2}}{N} \cdot p_{\text {astro }}(E, \theta)+\left(1-\frac{n_{a}}{N}\right) \cdot p_{\text {atmo }}(E, \theta)$

- Position of the Sun is homogeneously randomized within solar radius from the events \rightarrow called circle distribution
- $p_{\text {sig }}^{E}(E, \theta)$ is obtained by re-weighting the Sample to the baseline model

- Null hypothesis = background only, TS $=-2 \ln (L(0) / L(\hat{\mu}))$
- Sensitivifies are defined by test statistic distributions obtained by pseudo experiments
- 90% confidence level and discovery potential are estimated by TS distribution of a certain μ

Preliminary systematic uncertainty study
Signal prediction:
$\sim 28 \%$ Energy spectrum and angular distribution
Detector uncertainties:
~ < 20\% DOM efficiency
< 13% Ice properties
Background prediction:
6\% Cosmic ray shadow

The IceCube Neutrino Observatory (IIECUBE

Amundsen-Scortt Sout
Pole Station Antarctic
A Aatioal sciece Fond dition
managed research focilty

