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Cosmic ray interactions with the solar atmosphere are expected to generate energetic neutrinos that might be observable with neutrino telescopes, such as lceCube. These so called solar atmospheric
neutrinos are expected to have a harder energy spectrum compared to those generated in the Earth atmosphere. The difference originates from the lower atmospheric density of the Sun, which allows
secondary particles to decay rather than to reinteract. We present the sensitivity of the first search for solar atmospheric neutrinos, using seven years of data collected with IceCube. To distinguish
signal from backgrounds we perform a likelihood analysis using directional and energy spectral information. The analysis method and optimization will be introduced and sensitivities presented.
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The lceCube Neutrino Observatory
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The largest neutrino telescope in the world 2]
Located at geographical South Pole

D. Seckel, T. Stanev , and T. K. Gaisser,
“\_The Astrophysical Journal 382 (1991)

|
(o 4]

86 strings with 60 DOMs each
Volume ~ 1km?, Ethreshoia ~ 5 GeV (DeepCore)
~ 107 neutrinos / day at filter level
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Rely on well established IceCube event

reconstruction’!
Upgoing? v,,P samples are optimized at this analysis
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- Solar atm. neutrinos are generated when The solar atmospheric neutrino flux has been predicted in

cosmic rays produce particle showers in several independent works [2,3,4,5]

the Solar atmosphere Models are in good agreement and we choose two

 The first flux estimation dates back to benchmark models for this analysis
Seckel Stanev Gaisser (1991)8
- Below O(100GeV) significant dependence
on solar magnetic fields

Livetime = 7 years (May 31, 2009 - May 18, 2017)
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Likelihood Analysis & Sensitivities in lceCube as a signal Solar Dark Matter and the Neutrino Floor [4.5.8]

O Region of interest = @ < 5° from the Sun, E = [10%22,1072] GeV (IC79-2010/2011)
=[10% ,107 ] GeV (IC86-2011/2016)

O We estimated the sensitivity as using maximum LLH method

Likelihood function (L(E, 8|u)) is defined as a function of energy(E) and angular distance(@) from the Sun

L(E,B|p) = (u/N) * psig(E, 0) + (1 — p/N) * ppig (E, 6))

where N = 1010! number of events in pseudo experiment, g = number of signal events

ps&g(E g) = ( 92) p51g(E g)
Porg(E, 0) =2 =" Pasero E,0) + (1-22) - Patmo(E. 6)

0 Position of the Sun is homogeneously randomized within
solar radius from the events — called circle distribution

O psig(E, 6) is obtained by re-weighting the Sample to the
baseline model
O Null hypothesis = background only, TS = -2In(L(0)/L(4))

0 Sensitivities are defined by test statistic distributions obtained by pseudo experiments

0O 90% confidence level and discovery potential are estimated by 1S distribution of a certain u

T no systematics included

- Signal prediction:
~28% Energy spectrum and angular distribution
Detector uncertainties:
~ <20% DOM efficiency
~ <13% Ice properties
Background prediction:
~ 6% Cosmic ray shadow
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Conclusions

* Solar Atmospheric neutrinos might be observable with lceCube
* We have determined lceCube’s sensitivity for this signal using a log likelihood analysis
* Systematic studies are on-going and unblinding is expected in the near future

* Observing solar atmospheric neutrinos is important for:
« Understanding solar magnetic fields;
« Cosmic ray propagation in the inner solar system;
 Improving models of cosmic ray interactions in the solar atmosphere;
* Finding a high-energy neutrino point source
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+ Solar atmospheric neutrinos form a natural background to dark matter searches, that

can be visualized in form of a neutrino floor.
* A series of recent works quantified this floor [4.5.8l,
- We computed the solar atm. neutrino floor by requiring equal number of events
from dark matter annihilation and solar atmospheric neutrinos.

 In standard solar dark matter scenarios, annihilations occurs in the center of the Sun.

Due to neutrino absorption above 100GeV the neutrino spectrum from dark matter
annihilation can be expected to be significantly different compared to that from of
solar atmospheric neutrinos.

« Scenarios with “secluded dark matter”, could yield a high energy neutrino flux from

the Sun. A separate IceCube search is on-going.

High energy neutrino from
dark matter annihilation
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