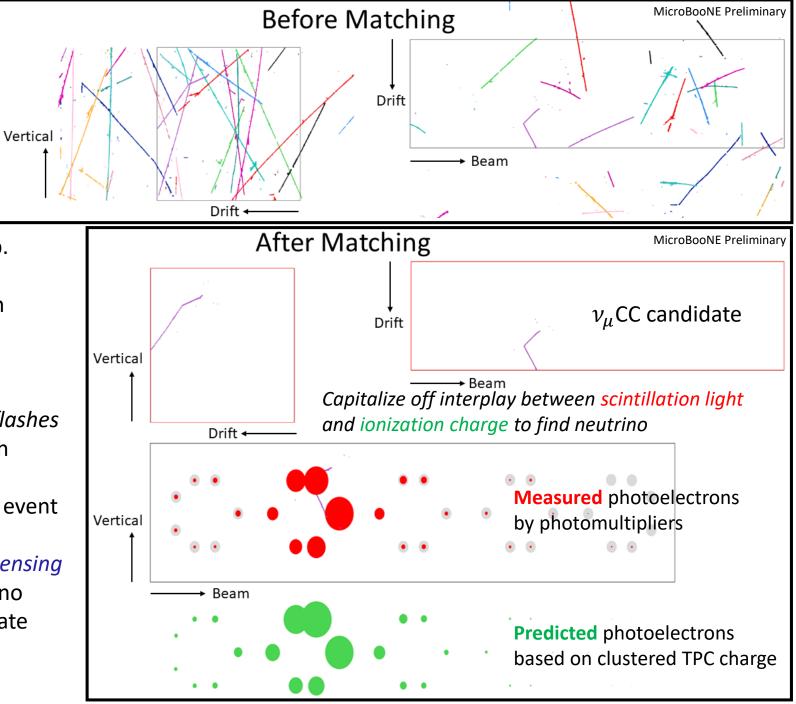
Towards Automated Neutrino Selection at MicroBooNE using Tomographic Event Reconstruction


Brooke Russell (Yale University) for the MicroBooNE Collaboration

MicroBooNE is a single-phase liquid argon time projection chamber (LArTPC) operating on the surface in the Booster neutrino beam at Fermilab.

Using *tomographic imaging*, new tools have been developed to vastly simplify downstream event reconstruction and neutrino selection.

Many-to-many *matching* of *TPC clusters* to *PMT flashes* is one such newly developed tool to facilitate high performance neutrino selection.

- Pairing of O(10) clusters to O(10) flashes in an event
 - A difficult combinatorial problem
 - Solving made accessible by compressed sensing
- A topology agnostic method to identify neutrino candidates and disambiguate neutrino candidate activity from cosmic activity

Towards Automated Neutrino Selection at MicroBooNE using Tomographic Event Reconstruction

Brooke Russell (Yale University) for the MicroBooNE Collaboration

- To evaluate the efficacy of our newly developed tools, we performed a hand scan of O(1k) events
- Matching permits classification of *singular TPC* objects
- Used a web-based interactive 3D display with full 3D clustered charge representation

With clean cosmic rejection, we show a step towards *high performance* neutrino selection for a surface single-phase LArTPC

Novel technique enabled by *improved understanding* of detector response & effective detector boundary

Neutrino2018

For more information please see

2

MICROBOONE-NOTE-1040-PUB http://microboone.fnal.gov/public-notes

Semi-Automated Scan Results					MicroBooNE Preliminar	
	$ u_{\mu}$ CC	Light Mismatch		Stopping μ	Other	Total
Beam off	0	187	415	95	40	737
Beam on	113	356	560	171	54	1254

- The overall passing rate (ratio of selected ν_{μ} CC candidates over initial software triggers) is **2.85%**
- 14 out of the 113 ν_{μ} CC candidates were determined to be backgrounds by a second round examination using calorimetry; these are likely "dirt" or ν NC interactions
- Fully-automated tools are being developed to mitigate identified background for ν_μCC; we're also pivoting to fully-automated ν_eCC selection for ν_e appearance

Cosmic contamination is significantly reduced by many-to-many matching