

Measurement of muon neutrino $CC0\pi$ cross sections on Oxygen and Carbon at the T2K near detector

M. BUIZZA AVANZINI^a, L. MARET^b on behalf of the T2K Collaboration

^aCNRS/IN2P3/LLR, Palaiseau, France; ^bUniversity of Geneva, Switzerland

4–9 June

1. Motivations (FAQ)

Understanding neutrino-nucleus interactions is essential for the precise measurement of neutrino (v) oscillations at long-baseline experiments, such as T2K.

Why the oxygen target?

The T2K far detector, Super-Kamiokande, and future Hyper-Kamiokande use water: measurement of v cross sections on oxygen required!

Why the O/C ratio?

The T2K near detector (ND280) has scintillator and water targets. O/C ratio could help to discriminate theoretical models and to compare with external measurements.

G.D. Megías Vázquez, PhD thesis

2. The T2K near detector: ND280

Near Detector complex (ND280) located at 280m from the production target, 2.5° off-axis as Super-Kamiokande.

For this analysis we use:

- 3 Time Projection Chambers (**TPCs**) for momentum reconstruction and particle identification [NIMA 637, 25 (2011)]
- 2 Fine-Grained Detectors (FGD1 and FGD2) as a target [NIMA 696, 1 (2012)]. Both are made of C₈H₈ scintillator bars alternately oriented in the x and y directions for a 3D tracking. FGD2 also contains water modules alternating with scintillator layers

Why CC0 π interactions?

CCQE interactions dominant at T2K. Not possible to identify them event-byevent (nuclear effects!).

Reduce model dependance by defining the signal based on the final state topology: Charged Current without pions in the final state ($CC0\pi$). <u>e:</u> mod - ¹⁶O/¹²C, k_F=216 - ¹⁶O/¹²C, k_E=230 -- ¹⁶O¹²C (MEC), k_F=216 - - ¹⁶O/¹²C (MEC), k_E=230 $- - - \frac{16}{10} O/^{12} C (QE), k_{\rm F} = 216$ • ${}^{16}O/{}^{12}C(QE), k_{r}=230$ $p_{...}$ (GeV/c)

CCQE **CC0**π

3. Event Selection

Select CC0 π interactions for v_{μ} . **Signal samples** : $1\mu + 0\pi + 0$, 1 or more protons

4. Simultaneous extraction of O and C cross sections

For the first time we combine FGD1 and FGD2 data to simultaneously extract the O and C double differential flux integrated cross sections as a function of the muon kinematics ($\cos\theta_{\mu}$, p_{μ})

FGD2

Base concept of the analysis:

- 1. samples reconstructed in FGD2-X layers are oxygen-enhanced
- 2. samples reconstructed in **FGD2-Y** layers and FGD1 are carbonenhanced

Via a binned likelihood fit, carbon and oxygen interactions are simultaneously fitted to the number of selected events, in all the signal

Fraction	CC0 π	CC0π
	oxygen	carbon
FGD1	~ 4%	~ 80%
FGD2-X	~ 50%	~ 35%
FGD2-Y	~ 15%	~ 60%

Key features

- Unconstrained fit parameters that estimate the signal in each bin -> minimize the model dependence!
- Detector-related and theoretical parameters included
- Data-driven regularization [arXiv:1802.05078] -> minimize the anti-correlation between adjacent bins (optional)!

GENI

 dx_i

(prior)

 $(V^{\rm cov})^{-1}$

 dx_i $\int \int dx_i dx_i$

 $-\frac{d\sigma_i}{d\sigma_i}$

5. Blind analysis: fit validation and pseudo data studies

Uncertainty summary

Example for Oxygen Prior: NEUT, Pseudo data: NEUT

Uncertainties estimation

- Nominal Monte Carlo is **NEUT** (5.3.2).
- Detector, vertex migration, flux and model systematic errors are evaluated via toy experiments. Toys are used to vary priors -> same technique will be used also for data.
- The final cross section is the mean value obtained over Ntoys and the standard deviation is taken as an uncertainty.

Fit validation

- Done using different sets of pseudo data.
- Here we show some examples using GENIE (below) and NEUT (right) as pseudo data.
- Example for the GENIE (2.8.0) sample. Goodness of fit*(χ^2)
- Preference for pseudo data, $\chi^{2} = \sum_{i}^{N_{bin}} \sum_{j}^{N_{bin}} \left(\frac{d\sigma_{i}}{dx_{i}} \right)^{Model}$ i.e. no bias from prior!

* considering detector, flux, model and statistical uncertainties

Conclusions: Fitter works correctly ->>> unblind soon! Stay tuned!