

Sterile neutrino in keV region in Tritium decay by Trotsk nu-vass

Pantuev V.S. for Troitsk group, INR RAS, Moscow-Troitsk

We present status, first results and upcoming updates of precision measurements of tritium beta-decay spectrum by the "Troitsk numass" experiment. The goal is to find distortion in the spectrum which may be caused by the existence of a heavy sterile neutrinos. A signature would correspond to a kink in the spectrum with characteristic shape and end point shifted by the value of a heavy neutrino mass. We set a new upper limits to the neutrino mixing matrix element U_{e4}^2 which improve existing limits by a factor from 2 to 5 in the mass range 0.1-2 keV. More results on the collected statistics are underway. New collaboration

TRISTAN-Troitsk with new Si multi pixel detector will open the road to higher and better quality data.

See also Lett. of Intent, arxiv:1504.00544 JINST 10 (2015) no.10, T10005

Up to 20% of electrons suffer back scattering from surface of the Si detector.

Simulation of electron tracks in Si.

- Distortion of spectrometer transmission function
- Detector efficiency and electron scattering at different energy
- Electronics dead time and pile up
- Gas column density fluctuation
- High voltage stability

Back scattered electrons can be reflected by electrostatic or magnetic mirrors or event exit through the spectrometer entrance back to WGTS and be lost

Electron Gun up to 30 keV at rear section

Recent published data

Electrostatic mirror at the detector side. Magnetic mirror at the entrance

JETP Lett. 105 (2017), 753, arXive:1703:10779

Very low noise multi-pixel Si drift detector. Prototype – 7 pixels by 2 mm each.

Final detector-166 ch. Will allow to measure m_s up to 10-**12 keV**

Upgrade: TRISTAN in Troitsk

Spectrum from e-gun

 E_{ini} =15 keV, Θ_{ini} =0...90deg, r=0 mm

simulation

measuremen

KATRIN – Max Plank Institute for Physics, Munich – Institute for Nuclear Research, Moscow-Troitsk

> Differential analysis of tritium spectrum 200 100 10 Energy [keV]

Raw tritium spectrum measured by one of the pixels in April 2018 Run. Data are been analyzed.

deposited energy E_{dep} in keV of 1st Hit