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Abstract: Lorentz symmetry is a fundamental space-time symmetry underlying both the Standard Model of particle physics and general relativity. This
symmetry guarantees that physical phenomena are observed to be the same by all inertial observers. However, unitied theories, such as string theory, allow
for violation of this symmetry by inducing new space-time structure at the quantum gravity scale. Thus, the discovery of Lorentz symmetry violation (LV)
could be the first hint of these theories in Nature. Here we report the results of the most precise test of space-time symmetry in the neutrino sector to date.
We use high-energy atmospheric neutrinos observed at the lceCube Neutrino Observatory to search tfor anomalous neutrino oscillations as signals of
Lorentz violation. We find no evidence for such phenomena. This allows us to constrain the size of the dimension-tour operator in the Standard-Mode

Extension (SME) for Lorentz violation to the 1028 |evel and to set limits on higher dimensional operators in this framework. These are among the most
stringent limits on Lorentz violation set by any physical experiment.

Lorentz Violation in the Standard-Model Extension (SME) Dataset and systematics
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