

The NOvA Test Beam Program

Junting Huang, Karol Lang The University of Texas at Austin On behalf of the NOvA Collaboration

NOvA Experiment

- NuMI Off-axis ν_e Appearance Experiment
- measure both ν_{μ} disappearance and ν_e appearance
 - 810 km baseline
 - 14 kton far detector
 - $-14.6 \,\mathrm{mrad}$ off-axis beam
 - energy peaks at 2 GeV
- physics goals
 - neutrino mass ordering

Test Beam Program Overview

- under development at the MC7 area of Fermilab Test Beam Facility
- direct 0.3 to $2 \,\mathrm{GeV/c}$ tagged electrons, muons, pions, kaons, and protons onto a downsized NOvA detector, in order to
 - study hadronic, muonic, and electromagnetic responses
 - build libraries for particle identification, among others
- data taking is scheduled to start in early 2019

– leptonic CP violation – precision oscillation measurements e.g. θ_{23}

Detector Technology

Fermilab Test Beam Facility (FTBF)

Tertiary Beamline

- secondary hadronic beam (8 to 64 GeV/c) directed onto a Cu target
- particle identification: time of flight ($< 200 \, \mathrm{ps}$), Cherenkov counter
- momentum reconstruction (< 2%): dipole magnet, wire chambers

- liquid scintillator filled in PVC cell of dimension $3.9 \,\mathrm{cm} \times 6.6 \,\mathrm{cm}$
- 0.7 mm wavelength shifting fiber coupled to avalanche photodiode
- cell planes are glued together to form a tracking sampling calorimeter

Standard Oscillation Systematics

• ν_{μ} disappearance systematics: muon energy scale, hadron energy scale, and scintillation model uncertainties combine to contribute 90% of the total systematic error for $\sin^2 \theta_{23}$.

Figure 1: The uncertainty on the measured $\sin^2 \theta_{23}$ (left) and Δm_{32}^2 (right) due to each systematic.

Figure 3: Tertiary beamline schematic (top) and its picture (bottom).

Test Beam Detector

• ν_e appearance systematics: energy calibration and detecresponse contribute 50% of the total systematic error. tor

Figure 2: The uncertainty in the ν_e signal (left) and background (right) due to each systematic.

• these uncertainties will be addressed by the test beam program

Figure 5: Left: 64 cells by 63 planes test beam detector $(2.6 \,\mathrm{m} \times$ $2.6 \,\mathrm{m} \times 3.9 \,\mathrm{m}$). Right: a simulated 0.6 GeV π^+ in test beam detector.

Figure 6: Transverse and longitudinal containments for π^- beam.