

Heavy neutral lepton (HNL) production searches at NA62

Published in Physics Letters B 778, 137-145 (2018) [1]

Neutrino Minimal Standard Model

- SM extension accounting for baryon asymmetry of universe (BAU), dark matter (DM), neutrino masses and oscillations
- 3 additional right-handed, singlet, Majorana HNLs (not observed yet)
- N mass $O(10 \text{ keV/c}^2)$, good DM candidate
- N_{2.3} mass O(1 GeV/c) [2]
- $B(K^{+} \rightarrow 1^{+}N)$ depends on $B_{SM}(K^{+} \rightarrow 1^{+}\nu)$, HNL-lepton coupling U^2_{μ} , and kinematic factor [2]

PMNS mixing matrix between HNL flavour and mass eigenstates

Previous measurements

- Production searches:
- Look for peaks in missing mass distribution
- Decay-model independent
- Sensitive to long-lived HNLs
- Previous measurements in $K^+ \rightarrow \mu^+ N$
- 90% CL upper limits (UL) on HNL-muon coupling U^2 :
 - KEK E089 (1982) [3]: (10⁻⁶, 10⁻⁴) for $m_{_{\rm N}}$ in (70, 300) MeV/c²
 - BNL E949 (2015) [4]: (10⁻⁹, 10⁻⁷) for $m_{_N}$ in (175, 300) MeV/c²
- NA62 (2017) [5]: (2.10⁻⁶, 10⁻⁵) for $m_{_N}$ in (300, 375) MeV/c²

Expected and observed UL (at 90% CL) from NA62 2007 data-taking [4]

HNL production searches at NA62

[u] 2

- Fixed-target experiment at CERN SPS:
- SPS 400 GeV/c p beam onto Be target \rightarrow 75 GeV/c K⁺
- In-flight K⁺ decays in 60 m long fiducial volume (FV)
- Data taking (2015-2018) with possibility to extend beyond 2021

CHOD LAV

- Measure B(K⁺ $\rightarrow \pi^+ \nu \ \bar{\nu}$) with 20% precision to study CKM matrix element V
- Perform hidden sector searches in presence of K^+ beam (axions, dark photons, HNLs)
- Minimum bias run (2015) [1]:
- Data collected during 1.2.10⁴ SPS spills (about 3 s effective spill)
- 0.4% 1.3% of nominal beam intensity (3.3.10¹² protons on target per spill)
- HNL production searches in kaon decays [1]:
- Kaons tagged with upstream Cherenkov detector (70 ps time resolution)
- Lepton tracks reconstructed in downstream spectrometer (130 μ m spatial resolution)
- Particle ID with downstream Cherenkov detector, spectrometer and calorimeters

Event selection

- One positive track with momentum in (5, 70) GeV/c, in time with kaon
- No extra activity in photon veto systems
- Positrons and muons identified through energy-momentum ratio [1]

Data-MonteCarlo comparison

- Squared missing mass: $m_{\text{miss}}^2 = (P_K P_1)^2 \text{ (SM } K^+ \rightarrow 1^+ \nu \text{ peak at } m_{\text{miss}}^2 = 0)$
- HNL signal regions:

• 170 < m_{miss} < 448 MeV/c² for K⁺ \rightarrow e⁺N and 250 < m_{miss} < 373 MeV/c² for K⁺ $\rightarrow \mu^+$ N [1]

Squared missing mass distributions for data and simulated events passing the e^{+} (left) and μ^{+} (right) selections [2]

Technique, results and future prospects

• Mass scans performed in HNL signal regions with step size of 1 MeV/c^2 • For each HNL mass hypothesis, background evaluated from sidebands of data

 m_{miss} distribution

- No statistically significant HNL production signal observed
- UL on $B(K^+ \rightarrow 1^+N)$ established for each HNL mass hypothesis
- UL on coupling computed from UL on BR
- UL on $|U_{2}^{2}|$ in (10⁻⁷, 10⁻⁶) for m_N in (170, 448) MeV/c² and on $|U_{11}^{2}|$ in (10⁻⁷, 10⁻⁶) for $m_{_N}$ in (250, 373) MeV/c² [1]
- Results improve world existing limits on HNL production searches on $|U^2|$ (over whole mass range) and on $|U_{\mu}^2|$ (for masses above 300 MeV/c²)
- 2016-2018 data collected by NA62 much larger than 2015 sample
- Opportunity to further improve existing limits on $|U_e^2|$ and $|U_u^2|$

Squared missing mass distributions for data and simulated events passing the e^{+} (left) and μ^{+} (right) selections [2]

[2] JHEP0710:015 (2007) [4] Physical Review Letters 49, 18 (1982) [3] Physical Review D 91, 052001 (2015)

[5] Physics Letters B 772, 712-718 (2017)

XXVIII International Conference on Neutrino Physics and Astrophysics, Heidelberg, June 2018 Lorenza Iacobuzio, University of Birmingham - lorenza.iacobuzio@cern.ch