

The Deep Underground Neutrino Experiment (DUNE) offers a large, fully active liquid argon time projection chamber (LArTPC) as its far detector, extremely well shielded from

"Single-phase" design: The detector is segmented in units of Anode Plane Assemblies, or APAs. Each one reads out drifted ionization charge from a volume of liquid argon on either side of a sensor wire array. Data is recorded in the form of high-resolution 2D-projected views of charged particle trajectories in the liquid argon, streamed continually at a rate of a few TB/s.

This positions the experiment very well for **off-beam**, rare event searches:

solar neutrinos

DUNE might be able to observe >10,000 solar neutrinos (hep and ⁸B) per year (few-15 MeV), per 10 kton

galactic supernova core-collapse

In the event of a galactic supernova (SN) burst, DUNE expects to observe up to thousands of SN neutrino interactions in the DUNE far detector (few-50 MeV).

astrophysical dynamics.

DUNE far detector DAQ architecture

The DUNE far detector "single-phase" TPC data acquisition system (DAQ) must be highly efficient at detecting rare physics-related activity above radiological backgrounds and detector noise, and capable of processing the data in real time with zero dead-time.

An effective 10 ⁴ data reduction factor is needed to cope with	h
back-end requirements (<30 PB/year to permanent storage	;)

Data Source	Occurrence Frequency in 10 kton Module	Data Volume Per Year	
Beam interactions*	~0.0002 Hz	30 TB	
Cosmics and atmospherics*	~0.05 Hz	10 PB	
Radiologicals**	1/month	< 1 PB	
Front-end calibration	4 runs/year; 100 measurements per ADC point	200 TB	
Radioactive source calibrations	<10 Hz, single APA	100 TB	
Laser calibrations	10 ⁶ laser pulses per year, with lossy data reduction	200 TB	
Random triggers	45/day	60 TB	
Local-level "trigger primitives"	6B per "trigger primitive" set, Ar39 dominated	6 PB	

*10 MeV threshold and beam timing applied

**Assumed to be dominant contribution to supernova readout (1/month fake rate), 30 second readout

Employing **Deep Neural Networks** for real-time image analysis of data for triggering or event filtering purposes:

Raw data from DUNE TPC are conveniently packaged in image format, and ideally suited for image classification applications. Inference times can be long, up to ~ms. Qualitatively:

Preliminary studies on "frame-by-frame" classification rates: **How well? And how fast?**

Classification sample

		SN class (%) score>0.98	RAD class (%) score>0.53	nnbar class (%) score>0.91	atmo. v class (%) score>0.67	NDK class (%) score>0.38	Cosmic class (%) score>0.82
	SN	53.13	5.66	0.0	0.25	0.20	0.12
	RAD	0.0	90.29	0.0	0.0	0.0	0.0
	nnbar	0.0	0.0	90.33	0.48	2.12	0.08
	atmo. v	1.71	5.19	8.63	21.81	30,421 ARY	2.29
	NDK	0.13	0.63	0.35	1.96 PRELI	90.17	0.33
	Cosmic	0.15	6.71	0.38	1.84	5.10	69.66

number of images with classification score > cut **Classification rate** = 100% total number of images of truly that particular class

Cuts chosen for minimizing fake rate from empty frames (RAD)

Can potentially accelerate through smaller network/smaller images

sample Generated