

The Vulcan Chip Analog

Ugur Yegin, Nina Parkalian, Pavithra Muralidharan, Christian Roth Hamburg 18 September 2017

VULCAN: basics and introduction

- 3 identical input channels sensing different signal ranges, all independently adjustable
- 1 amplification stage (TIA), power supplies, DAC's and 4 6-bit ADC's (8-bit if combined) per channel
- All clock signals provided by on chip PLL
- Smart data selection by digital core, buffers available for short term storage
- Data output by 16 LVDS pairs
- 4.7mmx4.7mm (ca 22mm²) with TSMC65 GP, QFN88 double row package

TIA, power supply, DAC's, TRG

Laycut of second Vulcan prototype

VULCAN: Overview of current status

- 1 test chip (all units as stand-alone blocks) and 2 prototypes (full signal chain) successfully tapeouted
- Test chip and 1st prototype measured, verified. Christian Roth will present.
- 1st prototype served as platform for debugging errors, all mended before 2nd prototype
- 2nd prototype is production ready version, will arrive at CW 45-47
- Verification plan being assembled now
- Production run (dedicated mask set) due in 2018

Vulcan Schedule

VULCAN: 1st \rightarrow 2nd prototype

- All functional blocks already included on 1st prototype
- Minor bugs preventing plug&play operation, solved by FIB
- Improvements implemented on 2nd prototype
 - Digital
 - Timing of clocktree (for both digital circuits and ADC) and LVDS improved significantly
 - Scanchain test implemented
 - Power routing improved significantly
 - Power
 - Capless LDO's improved to serve different current consumption windows
 - Improved power supply for TIA to match for low input impedance over bandwidth
 - Optional 1-supply voltage only operation implemented
 - TIA
 - Improved measurability and power supply strategy for biasing
 - PLL
 - Improved linearity of amplitude
 - Output buffer made bypassable

Featuring: Power management

Featuring: Overshoot

- Implemented to compensate the overshoot effect at the TIA input
- Excess current generated by input bias resistor generated by OSC instead of TIA
- For low gain channel, OSC performs as ADC input stage
- Versatile switching structure allows OSCOUT to perform as test input for ADC

Featuring: Analog Trigger

Thank you very much for your attention!

Backup slides

VULCAN: Overview of current status

65 nm CMOS

22 mm²

~ 1.2 W

< 10 Ohm

500 MHz

80 dB

3x 8 bit 0.06 p.e./bit

0.4 p.e./bit

8 p.e./bit

1 Gsample/s

Key Parameter of Vulcan

Highly linear, fully integrated circuit – Vulcan		Key Param
_	Sampling ADC with approx. 80 dB linearity	Process
	(3 signal chains with 3 different gains)	Active Area
_	No external components required	Power
_	On-chip clock generation from ref. clock	Input Impedance
Precise signal reconstruction		Input Bandwidth
		Sampling Rate
-	No analog delay line	Dynamic Range
	(reducing noise & distortion)	ADC Resolution
—	Control loop to suppress DC variations	High Gain
_	Optional overshoot compensation	Medium Gain
Further key parameters of Vulcan:		Low Gain
_	ADC with 9.5 bit (3x 8 bit), 1 Gsample/s	

- Input impedance of < 10 Ohm
- Power consumption ~ 1.2 Watt

Receiver Electronics

PMT

ADU

Signal Modes – Small & Medium Signals

First two signal chains

- Parallel TIA input
- Programmable gains
- Combined input resistance $R \approx 5 \Omega$

Signal Modes – Large Signals

Third signal chain

- Current > 20 mA
- TIA input saturates, ESD diodes open
- Voltage over diodes measured
- Combined input resistance $R \approx 5 \Omega$

Data Processing System

- Data selection
 (3 ADC → 1 sample)
- Meta data generation (ADC source, system events)
- Data buffering (Deal with meta data overhead)
- Data suppression for noise
 - Determined by threshold
 - Cut off 4 MSBs
- Buffer size based on supernova simulation

Mitglied der Helmholtz-Gemeinschaft

Additional Digital Features

Dedicated Trigger Lines

- Fast response on signals
 - One LVDS line per ADC
- Source selectable during runtime
 - Analog or digital threshold trigger
 - Two integral triggers

Baseline Regulation

- Feedback loop to correct baseline
 - Regulation only in noise mode
- Configurable during runtime
 - Enable
 - Threshold
 - Speed

Reliability Measures

- Generally: Product failures in different phases:
 - Infant mortality due to manufacturing defects
 - Normal life & ware-out due to electromigration
 - Electromigration covered by design & simulation
- Manufacturing defects due to process variations
 - Varying between wafers and with position on wafer
 - Goal: Filter out all unreliable ICs, only stable survive
- Extensive verification plan for product tests
 - Structural scan test and IDDQ test for digital circuits
 - Stress test to verify electro migration
 - Functionality test and performance selection

Strong Defects

- Not operational transistors/wires
- Immediate impact on functionality

Weak Defects

- Weakened wire, wears out over time
- Fails with stress on circuit

Electromigration-Aware Design

- Material transport by gradual movement due to electron collisions
 - Dependent on current density in the conductor
 - Degradation of the metal over time
 - Leads to connection faults in the design
- Prevent by design methods
 - Use wider/multiple conducting wires
 - Use multiple vias instead of single vias
- Perform electromigration studies to estimate degradation prior tapeout
 - Based on IR drop simulation
 - Detailed power consumption analysis
 - Critical areas are easily visible

IR drop analysis

- Digital part composed of combinatorial and sequential logic
 - Goal: Test the functionality of digital gates
 - Method: Include a scan chain to determine faulty gates
- Flip flops (FFs) exchanged by scan FF
 - Two modes for operation: regular and scan
 - Scan data loaded through scan chain, representing logic state
 - Data is processed through combinatorial logic
 - Data shifted out to scan output
- Scan pattern generated by ATPG tool
- Detects single stuck-at-fault gates and delay faults

ATPG = automatic test pattern generator

Vulcan: 140,000 FFs

Vulcan Schedule

