Gefördert durch
Deutsche
Forschungsgemeinschaft

A LASER SYSTEM TO MONITOR THE LS TRANSPARENCY

ON BRHALF OF THE JUNO FORSCHERGRUPPE

DFG MEETING - HAMBURG, SEPTEMBER 18TH 2017 WILFRIED W. DEPNERING

OUTLINE

• Motivation

• The Liquid Scintillator of JUNO

- Laser System
 - Conceptual Design
 - Determination Method
- Summary

MOTIVATION

- Determination of ...
 - attenuation length L
 - scattering length L_s
 - absorption length L_a
- for big volume

- Monitoring of L, L_s & L_a
 - are there changes over time?
- Measuring gradient in refractive index $n(\lambda,T)$
 - might influence photon propagation

laser system

THE LIQUID SCINTILLATOR OF JUNO

- Transparency
 - attenuation of light propagating through an absorber
- Attenuation length L:
 - combination of absorption length L_a & scattering length L_s

$$I(x) = I_0 e^{-x/L}$$

 $\lambda(\overline{\gamma_1}) < \overline{\lambda(\gamma_2)} < \lambda(\overline{\gamma_3})$

- Wavelength shift takes place on the first meters
 - after that mostly Rayleigh scattering

Rayleigh Scattering Length determines LS Transparency

CONCEPTUAL DESIGN

A Laser System to monitor the LS Transparency

CONCEPTUAL DESIGN

Roithner Lasertechnik class 3B, 430 nm already bought

A Laser System to monitor the LS Transparency

A Laser System to monitor the LS Transparency

FIBER TERMINATION & GRIN LENS

- Light collimation under water with ordinary lenses is difficult
- GRIN lenses are working also in optical thicker media
- GRIN lens is mounted directly on the optical fiber
- Laser light is collimated during its way through the GRIN lens

BEAM WIDTH ALONG THE PATH

• aperture angle is 0.3°

A Laser System to monitor the LS Transparency

PMT PROFILE VS. BEAM PROFILE

- Area of beam
 - gaussian profile
- Intensity between PMTs
 - 71.7%

Aperture angle still too big

PIN HOLE FOR FIBER TERMINATION

PIN HOLE FOR FIBER TERMINATION

- Pinhole mounted on supporting structure
 - further reduction of aperture angle
 - has to be at least smaller than 0.1°

A Laser System to monitor the LS Transparency

Fiber Termination Holder (FTH)

Main Purpose:

- laser beam must not hit PMTs directly
 - FTH should be slewable
- using piezoelectrical crystals
 - no magnetic field
 - do not influence performance of PMTs

How to control and adjust the termination holder?:

- Piezo Driver of FTH should operate by remote control
 - easier handling & independent from location
- Driver has to communicate with piezo crystals
 - providing them with the right voltage
- digitizer has to use PMTs output for adjustment
 - interface with PMTs is necessary
- collected data should be shared with "offline people"

Should be doable with **IOC**s based on **EPICS**

Next Steps:

- construction of FTH
- setting up the software to control the FTH

CeramTec SealActor Piezo Crystal

Workshop of Uni Mainz 1st design suggestion for FTH

Wilfried W. Depnering

WORKING PRINCIPLE

- linear expansion of piezos is translated into rotation
 - using screws fixed on a support structure
- the shorter the lever arm of force, the bigger the rotation angle
 - coupled system for θ and ϕ -direction

- Measuring amount & distribution of photon hits
- MC for different L, L_s & L_a
 - knowledge of L_{water}
 - knowledge of absorbance of acrylic
 - Likelihood method to determine values for L, L_s & L_a of liquid scintillator

- Measuring amount & distribution of photon hits
- MC for different L, L_s & L_a
 - knowledge of L_{water}
 - knowledge of absorbance of acrylic
 - Likelihood method to determine values for L, L_s & L_a of liquid scintillator

- Measuring amount & distribution of photon hits
- MC for different L, L_s & L_a
 - knowledge of L_{water}
 - knowledge of absorbance of acrylic
 - Likelihood method to determine values for L, L_s & L_a of liquid scintillator

- Measuring amount & distribution of photon hits
- MC for different L, L_s & L_a
 - knowledge of L_{water}
 - knowledge of absorbance of acrylic
 - Likelihood method to determine values for L, L_s & L_a of liquid scintillator

Determination of L, L_s & L_a

A Laser System to monitor the LS Transparency

12/13

350 Phi [°]

SUMMARY

- Most of the components are already bought
 - in the near future, focusing on fiber termination holder (FTM)
- Currently, working on ...
 - characterization of single components
 - design of FTM
 - setting up the software to control FTM

THANK YOU FOR YOUR ATTENTION!

Further ideas & suggestions for improvement are appreciated! e-Mail address: widepner@uni-mainz.de

ATTACHMENT

LOCATION OF FIBER TERMINATION – CENTER BEAM

LOCATION OF FIBER TERMINATION – OFF-CENTER BEAM

LASER SOURCE

CW405-01 class 2

RLT430-50CMG class 3B

- Roithner LaserTechnik GmbH
- Operating at λ = 430 nm
 - primary Rayleigh scattering
- High photon statistics
 - low absorption
 - high PMT QE

bis-MSB spectra

COUPLING UNIT

- Laser light is coupled into optical fiber
 - requires precise adjustment
 - using first aspheric lens for collimation
 - using second aspheric lens for coupling

coupling into optical fiber

- Using laser holder from Thorlabs
 - is movable/slewable in xy-direction
- Using holders for aspheric lenses from Thorlabs
 - are movable in xyz-direction

FIBER SWITCH

- High transparency in UV/VIS region
- Controllable by PC (USB connection)
- One Inlet & Sixteen Outlets
 - one fiber for the reference measurements
 - other fibers to address multiple laser subsystems

Subsystems are separated from each other

schematic of fiber switch

SENSITIVITY STUDY - APPROACH

- 1st step: Producing a **LookUpTable** (LUT) for different value pairs
 - going through L- and L_s-ranges...
 - L [L_{min}=15m, L_{max}=30m]
 - $L_s [L_{s,min} = L_{min} + 1m, L_{s,max} = 40m]$
 - checking, if L_a value is satisfying L_a range
 - L_a [L_{a,min} =40m, L_{a,max} =120m]

- value pairs which do not satisfy these ranges are rejected
- due to simulation time only 1 million photons for each value pair
- 2nd step: Producing a **Sample Data Set** with L=20m, L_s=30m & L_a=60m
- Simulation of an ideal scenario
 - perfect collimated light beam
 - beam goes through the detector center (hits surfaces under an 90° angle)

SENSITIVITY STUDY – PRELIMINARY RESULTS

Including only statistical fluctuations

•

- True & Best Fit Location are at least close to each other
 - higher statistics will improve results

CONCLUSION

- Determination method is working...
 - still space for improvement
 - further development of analysis algorithm
 - increase statistics for LUT and Data Set Sample
- Systematics should be studied and taken into account
 - pivoting angle of the laser beam
 - aperture angle of the laser beam
 - changing values for acrylic transparency
 - changing values for water transparency

PERFORMANCE OF DETERMINATION METHOD

SYSTEMATICS

- It might happen, that a laser beam does not go through the detector center
 - hits acrylic sphere not under an 90° angle \rightarrow refraction
- What is the influence on the sensitivity?

INFLUENCE OF A PIVOTING ANGLE

Looks like the sensitivity is deteriorated?

INFLUENCE OF A PIVOTING ANGLE ON L

Pivoting Angle Dependancy of L

fit values

INFLUENCE OF A PIVOTING ANGLE ON L

Effect on performance is smaller than the statistical fluctuations

۲

INFLUENCE OF A PIVOTING ANGLE ON L_S & L_A

• Same situation for the L_s & L_a

GAUS PROFILE OF LASER BEAM

APERTURE ANGLE VS. BEAM INTENSITY

OPTICAL INSTRUMENTS

• Thorlabs: PM130D

(PowerMeter)

- λ: 400 nm 1100 nm
- A: 9.5 x 9.5 mm²
- P: 0.5 nW 500mW

- Edmund Optics: #89-308 (Beam Profiler)
 - λ: 350 nm 1150 nm
 - A: 11.3 x 6.0 mm²
 - pixel size: 5.5 x 5.5 μ m²
 - saturation: 10W/cm²

