



Mathematisch-Naturwissenschaftliche Fakultät Kepler Center for Astro and Particle Physics



# Cavity enhanced long light path attenuation length measurement

An alternative approach in measuring the attenuation in the liquid scintillator for JUNO

Tobias Heinz, 18.09.17





Forschergruppe JUNO



#### Outline

- Motivation
- Properties of optical cavities
- Measurement of attenuation length
- First results
- Next steps



#### **Motivation**

- Attenuation length cannot be measured precisely with commercial available UV-vis spectrometers due to small decrease in intensity (the intensity drops to 99,6% of initial intensity after 10 cm in medium with attenuation length of 25 m )
- Need long light path to be able to measure attenuation length of LS
- But: very impractical to build cells with lengths of several meters
- Solution: use optical cavity to extend light path



#### **Optical Cavity**

An optical cavity is an arrangement of mirrors so that light is reflected multiple times

- An optical cavity is characterized by mirror reflectivities  $R_1, R_2$ , the radii of curvature  $r_1, r_2$  and the distance between both mirrors L
- The light path is only closed inside of cavity for certain combinations of  $r_1, r_2$  and L

Stability criterion

$$0 \leq \left(1 - \frac{L}{r_1}\right) \left(1 - \frac{L}{r_2}\right) \leq 1$$



#### **Optical Cavity**

- Photons are reflected multiple times inside of cavity
  - Depending on the mirror reflectivities  $R_1$ ,  $R_2$  the average light path is extended by a certain factor







LPE factor for cavity with effective mirror reflectivity  $\sqrt{R_1R_2}$ 



#### **Optical Cavity**

- Photons are reflected multiple times inside of cavity
  - Depending on the mirror reflectivities  $R_1$ ,  $R_2$  the average light path is extended by a certain factor

Light path extension factor 
$$\epsilon = \frac{2R_1R_2}{1-R_1R_2}$$

• Effective average light path is given by:

Effective light path

$$L_{\rm eff} = (1 + \epsilon)L$$



#### **Parameters of cavity mirrors**

In Tübingen we use two identical concave cavity mirrors

- Radius of curvature: -50 cm
  - Possible cavity lengths from 0 to 1 meter
- Reflectivity: 0.95
  - LPE factor: ~18.5

Effective light path up to ~19.5 m possible



#### Measurement of attenuation length

The output intensity is a superposition of waves with various numbers of round trips

- Attenuation length cannot be measured with Beer's law

Two possibilities:

- Modulated intensity method:
  - initial intensity is modulated sinusoidally
  - output intensity is phase-shifted sine wave
    - Phase-shift occurs due to attenuation inside of cavity
- Ring down measurement:
  - build up intensity inside of cavity
  - turn off light source
    - output intensity will drop exponentially
    - time constant of exponential decrease depends on attenuation



#### **CELLPAL** measurement

Modulated intensity method was chosen:

- > ability to sweep modulation frequency
  - >more data due to relation between phase-shift and modulation frequency
- > the attenuation has an impact on amplitude and phase-shift of output intensity

>two ways to determine attenuation length with one measurement



#### Schematic illustration of setup





#### **CELLPAL** measurement

Input intensity

 $I_{\rm in}(t) = I_0 \left[1 + \alpha \cdot \sin\left(-\omega t\right)\right]$ 

measured with detector in front of cavity

Output intensity  $I_{out}(t) = I'_0 [1 + \alpha' \sin(-\omega t + \phi)]$ 

measured with detector behind cavity



#### **CELLPAL** phase-shift measurement

#### Phase-shift between detector signals

$$\Delta \phi = rac{2\pi f \Delta L}{v_{g}} + \arctan\left(rac{A_{
m eff} \sin\left(rac{4\pi f L}{v_{g}}
ight)}{1 - A_{
m eff} \cos\left(rac{4\pi f L}{v_{g}}
ight)}$$

with 
$$A_{\rm eff} = R_1 R_2 \exp\left(-\frac{2L}{L_{\rm att}}\right)$$

- *f*: modulation frequency
- $\Delta L$ : net distance between both detectors
- $v_g$ : group velocity
- Latt: attenuation length



#### **CELLPAL** amplitude measurement

Output amplitude  

$$l'_{0} = \frac{(1 - R_{1})(1 - R_{2})\exp\left(-\frac{L}{L_{att}}\right)}{1 - A_{eff}} l_{0}$$

$$\alpha' = \frac{(1 - A_{eff})\alpha}{\sqrt{1 - 2A_{eff}\cos\left(\frac{2\omega L}{V_{g}}\right) + A_{eff}^{2}}}$$
with  $A_{eff} = R_{1}R_{2}\exp\left(-\frac{2L}{L_{att}}\right)$ 



• Light source: High Power LED (420 nm) coupled to fiber







#### setup placed inside darkbox with nickel-copper shielding











### First results – Laser as light source/photodiode as detector





## First results – Laser as light source/photodiode as detector

- The measured data points were fitted with the function for  $\Delta \phi(f)$ :
  - values used in calculation:
    - cavity length: 0.25 m
    - attenuation length in air: 5000 m
    - speed of light in air: 299 700 000 m/s
  - fit parameters:
    - mirror reflectivity
    - net distance between detectors

 $\begin{aligned} & \text{Results of fit} \\ & R = 0.956 \pm 0.004 \\ & \Delta L = 0.78\,\text{m} \pm 0.07\,\text{m} \end{aligned}$ 

Value of manufacturer  $R = 0.95 \pm 0.005$ 

method seems to work!



## First results – Amplitude measurement in Laser/PD setup





## First results – Amplitude measurement in Laser/PD setup

- The measured data points were fitted with the function for  $\frac{I'_0 \alpha'}{I_0 \alpha}(f)$  with the same values used in calculation as before
- Mirror reflectivity as fit parameter

Result of amplitude fit 
$$R = 0.956 \pm 0.002$$



#### First results with current setup





#### First results with current setup

Same values used in calculation as before

LED/PMT setup result

 $R = 0.953 \pm 0.006$ 



#### First results with current setup

Same values used in calculation as before

LED/PMT setup result  $R = 0.953 \pm 0.006$ 

Laser/PD setup result

 $R = 0.956 \pm 0.004$ 

Result of amplitude fit  $R = 0.956 \pm 0.002$ 

Value of manufacturer  $R = 0.95 \pm 0.005$ 

reproducable results with both setups!



#### **Next steps**

- Build cavity which is able to be filled with LS
- Reflectivity of mirrors in LS should be known precisely
   nood experimental method to measure mirror reflectivity
  - need experimental method to measure mirror reflectivity in liquid with refractive index >1



### Thank you.

Contact:

#### **Tobias Heinz**

Kepler Center for Astro and Particle Physics University of Tübingen Auf der Morgenstelle 14 72076 Tübingen · Germany Phone: +49 7071 29-76280 tobias.heinz@uni-tuebingen.de







#### **CELLPAL ring down time measurement**

- After light source is turned off, the output intensity drops exponentially:  $I(t) = I_0 e^{-t/\tau}$
- Ring down time depends on mirror reflectivity R, cavity length L and attenuation length  $L_{att}$

### Ring down time $\tau = \frac{L}{c\left[1 - R + \frac{L}{L_{att}}\right]}$



## Frequency dependence of phase-shift for different values of attenuation length in 40cm cavity





## Frequency dependence of amplitude for different values of attenuation length in 40cm cavity

