Topological Track Reconstruction: Adaptation to JUNO and Latest Studies

Henning Rebber¹

on behalf of

Björn Wonsak¹, Sebastian Lorenz², David Meyhöfer¹, Felix Benckwitz¹, Daniel Hartwig¹, Katharina Voss¹

¹Universität Hamburg, Germany – Institut für Experimentalphysik ²JGU Mainz, Germany – Institut für Physik

The Topological Reconstruction was developed for LENA.
But: The principle is adaptable to **any** large volume LSc detector.
→ Use it for JUNO!

Adaptation of Reconstruction to JUNO

- adapt software framework: JUNO geometry, PMT positions, PMT types, ...
- pre-computation of look-up tables for spatial distriution of
 - photon run times
 - hit probability
 - \rightarrow consider **refraction** at acrylic sphere (tricky!)
 - extension of optical model: take into account wavelength dependence of optical parameters
- interfacing between output from JUNO MC and topological reconstruction framework, adaptations in MC-output

Software now ready to use for JUNO!

(pre-) Preliminary Results

central event:

- 3 GeV muon
- starting from (0,0,0) cm
- 21 iterations
- 12.5 cm binning

- observed strange patterns and shifts
- → faulty photon run times. Offline simulation uses group velocity!

100

0

y [cm]

-200

-100

200

(pre-) Preliminary Results

with correct LUT's: ٠ \rightarrow Track is reconstructed much better!

a.u.

vx projection

Improving the Algorithm (LENA framework)

- LENA event:20 GeV muon
- horizontally crossing the detector
- 1 iteration
- 100 cm binning
- external knowledge on the event allows to confine the probability mask
 - \rightarrow save computation time
- optical scattering can be treated statistically
 → better localize the event
- exclude PMTs near entry and exit point
 - \rightarrow remove artifacts

- binwise projection of dE/dx onto the track
- comparison to MC truth shows that dE/dx is reproduced well
- features like **hadron showers** become visible
- not studied quantitatively yet

e/μ -Discrimination

- compare longitudinal extend ('track length') of electrons and muons
- ightarrow very clean discrimination above 1 GeV
- ightarrow effective down to 500 MeV

e^{-}/π^{0} -Discrimination

Reconstruction of a 500 MeV π^0 starting from (0,0,1000) (LENA)

- current study to discriminate e⁻/π⁰
- development of discrimination parameters:
 - features in **dE/dx** projection
 - track length
 - asymmetry in lateral distribution
- some encouraging first results (see picture), but still challenging task
- quantitative study ongoing

- migration to JUNO complete!
 - \rightarrow more validation required
- use in other experiments in progress: **Borexino** [B. Opitz] and **THEIA** [B. Wonsak]
- JUNO: 5-10% of light from Cherenkov rather than scintillation:
 → expect improvement if separation could be done in future
- ongoing studies investigating potential of **particle discrimination**:
 - e/µ
 - e⁻/π⁰
- work on statistical treatment of scattering
- my work: concentration on **low energies (MeV)**, investigate e^+/γ , e^+/e^-

Staff (JUNO)

Björn Wonsak Sebastian Lorenz	- Postdoc
David Meyhöfer Henning Rebber	PhD students
Felix Benckwitz Katharina Voss	Bachelor students student assistants

Thank you for your attention!

How to reconstruct a track

Assume simple model:

- clearly defined reference point and time
- p.d.f. for timing uncertainty and scintillation process

\rightarrow spatial p.d.f. for emission point

put together all hits from all PMTs

 \rightarrow get number density distribution of photon emissions

so far: PMT information usedindependentlybut: emissions are correlated!

 \rightarrow use result as prior information for iterative process

