

Status of Waveform Reconstruction

DFG Meeting Hamburg Forschergruppe JUNO

18th September 2017 | Michaela Schever

Gefördert durch
DFG
Deutsche
Forschungsgemeinschaft

Outline

Muon waveform reconstruction

- First hit time reconstruction
- Charge reconstruction
- Rise time

IBD waveform reconstruction

- Overview of deconvolution method and Wiener filter
- Variation of common reconstruction method

Muon Waveforms

Muon waveform reconstruction

- First hit time reconstruction
- Charge reconstruction
- Rise time

Muon Waveforms Motivation

- Needed for muon track reconstruction
- Typical NPE for muon events: 500 5000
- Sampled with three regions differing in resolution
- New package: MuonWaveRec
- Quantities relevant for reconstruction:
 - First hit time (fht)
 - Charge
 - Rise time
- MuonWaveRec used in muon reco paper draft by Christoph [DocDB 2414-v2]

Muon Waveforms: First Hit Time Constant Fraction Discriminator: Method

Example of fht determination by CFD

Constant Fraction Discriminator (CFD):

- Set first hit time when waveform passes a threshold
- Set threshold as relative fraction of waveform height
- Implementation: go from global maximum to earlier times until threshold is passed
- Other methods studied; this one yields best results

Muon Waveforms: First Hit Time Constant Fraction Discriminator: Results

[[]Christoph Genster]

- Fht resolution depends on relative threshold
- Best fht resolution: ~3.4 ns at threshold of 4% of signal height
- Rising edge of waveform influenced by distribution of arriving photons
 → worsens resolution obtained by CFD
- Best value of FadcOffset has to be determined
- CFD used in MuonWaveRec package
- MuonWaveRec used for muon track reco in validation since J17v1r1-Pre2

Muon Waveforms: Charge Charge Integration: Method

Example of charge reconstruction

Charge integration:

- Perform baseline correction
- Integrate waveform area
- Integration area: entire readout window

Muon Waveforms: Charge Charge Integration: Results

- Charge resolution with RMS ≈ 0.17
- Tendency to reconstruct too few nPE, especially for large charges

 \rightarrow Needs improvement, especially for large charges

Muon Waveforms: Rise Time Method & Results

Example of rise time reconstruction

Rise time distribution for center event

Rise time:

- Time waveform needs to rise from 10% to 90% signal height
- Recently introduced to DataModel

IBD waveform reconstruction

- Overview of deconvolution method and Wiener filter
- Variation of common reconstruction method

- Quantities to reconstruct: charge and time of each photo-electron (PE)
- Charge and time information are included in hit distribution

- Quantities to reconstruct: charge and time of each photo-electron (PE)
- Charge and time information are included in hit distribution
- Each hit in hit distribution is convoluted with SPE response

- Quantities to reconstruct: charge and time of each photo-electron (PE)
- Charge and time information are included in hit distribution
- Each hit in hit distribution is convoluted with SPE response
- SPE responses add up to waveform

- Quantities to reconstruct: charge and time of each photo-electron (PE)
- Charge and time information are included in hit distribution
- Each hit in hit distribution is convoluted with SPE response
- SPE responses add up to waveform
- Deconvolution method reconstructs hit distribution from waveform

IBD: Wiener Deconvolution The Wiener Filter

- Deconvolution method requires noise filter if signal contains noise
- Filters should select signal part of measurement
- One possibility: Wiener filter:

 $\frac{|S|^2}{|S|^2 + |N|^2}$

- Filtering in frequency domain
- Optimal filter from mathematical point of view
- Requires precise knowledge of expected signal and noise

Example of Wiener filter

IBD: Wiener Deconvolution Variation of common method

- Method commonly results in charge reconstruction by integration
- Integration depends on integration limits

commonly: charge integration in time domain

IBD: Wiener Deconvolution Variation of common method

- Method commonly results in charge reconstruction by integration
- Integration depends on integration limits
- Idea: obtain both time and charge from frequency domain
- Principle of variation:

commonly: charge integration in time domain

deconvoluted spectrum in frequency domain

IBD: Wiener Deconvolution Variation of Common Method – Principle

Plotting **phase differences Δφ**:

- Distribution loses clarity when systematic noise is added
- Fit gets unstable
- Uncertainty of peak position increases

 \rightarrow change method of time extraction

IBD: Wiener Deconvolution Further Variation of Common Method

Noiseless case:

Fourier transform: time is given by position of delta peak altered transform: time is given by slope of straight line

Wiener Deconvolution Variation of Common Method

Solution:

Solution:
Replace Fourier transform
$$X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-i2\pi k n/N}$$
 with $X_k = \sum_{n=0}^{N-1} x_n \cdot e^{-i2\pi k n/N^2}$

Noiseless case:

Fourier transform: time is given by position of delta peak altered transform: time is given by slope of straight line

Work in progress ...

Summary & Outlook

Muon waveform reconstruction:

- First hit time studied by constant fraction discriminator approach and constant threshold: resolution: ~3.4 ns
- Charge reconstruction by waveform integration
- Rise time introduced
- New Package: MuonWaveRec

IBD waveform reconstruction:

- Deconvolution method is studied based on the frequency domain spectrum
- Fourier transform is altered to fit time
- Focused on study of SPE waveforms until now
- Continued by study of general waveforms of more PE