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● Deep Learning can be useful in many aspects 
of JUNO:
– Classification (e.g. event types)

– Reconstruction (e.g. tracking, energy, …)

– Many other tasks

● My studies focus on classification
– Emphasize on e+/e- discrimination

Goals
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Outline

● Electron and Positron events
● Image Generation

– Issues

– Implementation

● Classification
– Current state
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Electron and Positron events
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Implementation

● State of the art classifications:
– Neural Networks (NN) with image recognition

– Usually realized as Convolutional Neural Networks 
(CNN)

● Need to produce images from events with 
spatial information of event
– PMT hit times

– Mean hit time

– Charge
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PMT Data
Each PMT

Hit Time 1, Hit Time 2, ...

First hit, Mean hit, Stddev. hit

Gives us three channel with spatial information which can be interpreted as color channel 
for image.
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Image Generation - Issues

● NN’s work with inputs of arrays/tensors of some 
shape (dim1, dim2, ...)

● How to get spherical distributed PMT pixels into 
array like shape?



19.9.2017 Thilo Birkenfeld 8 of 20 

Image Generation – Mapping to Array

Projecting PMTs on (Θ, φ)-Space:

Mapping

Θ
 b

in
s 

Φ binsColor code:
● Blue = small ID’s
● Yellow = big ID’s
● Black = empty bins
Note: We use big PMTs only
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Image Generation - Intermediate

● Simulated Electron event first hit times in (Θ, 
φ)-Space:
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Image Generation - Intermediate

● Simulated Electron event first hit times in (Θ, 
φ)-Space:

–

Low Pixel density

High Pixel density
Event Center
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Image Generation - Improvements

● Our approach to solve issues:
➢ Rotate each image to its center of mass

➢ No Image splitting
➢ Reduce influence of event position to 

images
➢ Shift pixel together

➢ Constant pixel density
–
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Image Generation - Complete

–

θ,φ

Squeeze φ bins 

Rotated Coordinates

θ

φ



19.9.2017 Thilo Birkenfeld 13 of 20 

Image Generation - Complete

–

θ,φ

Squeeze φ bins 

Rotated Coordinates

φ=0

φ=π

φ=-π

θ

φ

➔ Event always in the center of image

➔ No empty bins between pixel
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Image Generation – Example Event

–

5 MeV

RGB Color Channel:
Red = first hit time

Green = mean hit time
Blue = stddev hit times
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Classification

● Training Convolution 
Layers of deep networks 
is costly

● Especial with lots of data 
(3.6 million uniform 
distributed 
electron+positron 
events)

● Try using a high 
performing pretrained net 
as base
– ResNet 50 for example

ConvolutionConvolution

Feature MapFeature Map

ClassificationClassification

Typical CNN:
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Positrons vs. Electrons

Training results with sample of 100k events
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Muons vs. Electrons

● Bug in the program
● ResNet 50 not able to distinguish shape 

differences
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Thank you for your attention!

Contact:

Thilo Birkenfeld
III. Physikalisches Institut B RWTH Aachen University

thilo.birkenfeld@rwth-aachen.de
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Categorical Cross Entropy

● Categorical Cross Entropy is minimized for 
training

●                       is probability for class as 
predicted by NN

●      = 1 for true class, 0 else
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