

Status Report: DSNB Simulation and Background Estimation

Julia Sawatzki

Physics Department E15 Technical University Munich, Germany julia.sawatzki@ph.tum.de

19.09.2017

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

19.09.2017 1 / 27

2 Simulation Procedure and IBD Event Selection

3 Background Sources

4 Status and Results

2 / 27

19.09.2017

Diffuse Supernova Neutrino Background

- the cumulative neutrino emission of core-collapse supernovae throughout the universe
- detection also via the inverse beta decay $(\bar{\nu}_e + p \rightarrow n + e^+)$
- calculation of the spectrum:

$$\frac{dR_{\nu}}{dE_{\nu}} = \frac{dF_{\nu}}{dE_{\nu}} \cdot \sigma_{\nu}(E_{\nu}) \cdot N_{p},$$

with

- $\frac{dF_{\nu}}{dE_{\nu}}$ as the DSNB Flux, $\sigma_{\nu}(E_{\nu})$ as the cross section for the IBD reaction,
- N_p as the number of protons in the target volume.

Diffuse Supernova Neutrino Background

- the cumulative neutrino emission of core-collapse supernovae throughout the universe
- detection also via the inverse beta decay $(\bar{\nu}_e + p \rightarrow n + e^+)$
- calculation of the spectrum:

$$\frac{dR_{\nu}}{dE_{\nu}} = \frac{dF_{\nu}}{dE_{\nu}} \cdot \sigma_{\nu}(E_{\nu}) \cdot N_{p},$$

with

- $\frac{dF_{\nu}}{dE_{\nu}}$ as the DSNB Flux, $\sigma_{\nu}(E_{\nu})$ as the cross section for the IBD reaction,
- N_p as the number of protons in the target volume.

19.09.2017 3 / 27

DSNB Flux

with the supernova rate R_{SN} and the neutrino spectrum $\frac{dN_{\bar{\nu}e}}{dE_{\bar{\nu}e}}$

 $R_{SN} \propto R_*(z)$, depend on the star formation rate $R_*(z)[1]$.

The neutrino spectrum follows a Maxwell Boltzmann distribution[2]:

$$\frac{dN_{\bar{\nu}_e}}{dE_{\bar{\nu}_e}} \propto \frac{1/6 \cdot L_{\odot}}{\langle E_{\bar{\nu}_e} \rangle} \frac{E_{\bar{\nu}_e}^2}{\langle E_{\bar{\nu}_e}^3 \rangle} \exp^{-3E_{\bar{\nu}_e}/\langle E_{\bar{\nu}_e} \rangle},$$

with L_{\odot} as the total luminosity of the sun, $\langle E_{\bar{\nu}_e} \rangle$ the mean neutrino energy and factor 1/6 for electron antineutrinos

⁰[1]Ando:2004hc, [2]Wurm:2011zn

19.09.2017

DSNB Flux

19.09.2017 5 / 27

DSNB Spectrum

$< E_{ u} > ext{in MeV}$	DSNB events $/ 10$ years $/$ 17 kt
12	28
15	36
18	44
22	55

Forschergruppentreffen JUNO, Hamburg

DSNB Generator

- generate positron-neutron pairs
- direction of incoming neutrinos are homogeneously distributed
- input parameter for generator is mean neutrino energy: $< E_{\nu} > gu92zut@ges02:DSNB$ DSNB.exe --help DSNB.exe [-seed seed] [-o outputfilename] [-n nevents] [-E_mean E_mean]$

10k simulated events with $< E_{\nu} >=$ 12, 15, 18, 21 MeV:

Forschergruppentreffen JUNO, Hamburg

19.09.2017 7 / 27

2 Simulation Procedure and IBD Event Selection

3 Background Sources

- Physics simulation (detsim)
- Selection of IBD-like events
 - Fiducial volume cut: Only accept events with $R < R_{max}(16m)$
 - Time difference cut: 600 ns $< \delta t^{\rm p-d} < 1 {\rm ms}$
 - Neutron multiplicity cut: two pulses in time window of 1 ms

• Neutron delayed energy cut¹: $|nPE_d - 3050| < 400$

¹from simulating 1k homogeneously distributed 2.2 MeV_gammas = >

Forschergruppentreffen JUNO, Hamburg

19.09.2017 9 / 27

- Physics simulation (detsim)
- Selection of IBD-like events
 - Fiducial volume cut: Only accept events with $R < R_{max}(16m)$
 - Time difference cut: 600 ns $< \delta t^{\rm p-d} < 1 {\rm ms}$
 - Neutron multiplicity cut: two pulses in time window of 1 ms

 \rightarrow should be done within/after electronic simulation

Neutron delayed energy cut¹: |nPE_d − 3050| < 400
 → update this with calib data

ightarrow update this with callb data

¹from simulating 1k homogeneously distributed 2.2 MeV gammas (=)

- Physics simulation (detsim)
- Selection of IBD-like events
- Electronic simulation
- Calibration
- Seconstruction based on RecPSDAlg (Yu Xu), no vertex rec.

J17v1r2

- Physics simulation (detsim) \checkmark
- ② Selection of IBD-like events√
- Electronic simulation
- Calibration
- Seconstruction based on RecPSDAlg (Yu Xu), no vertex rec.

تاليا ٤ ৩٩٣

19.09.2017

9 / 27

Diffuse Supernova Neutrino Background

2 Simulation Procedure and IBD Event Selection

Background Sources

3

- Reactor Neutrino Background
- Atmospheric Neutral Current Background
- Atmospheric Charged Current Background
- Li9-Background
- Fast Neutrons

Status and Results

Reactor Neutrino Background

- \sim 60 reactor neutrino events/d \rightarrow 180k events in 10 years $(R_{reactor}/R_{DSNB} = 4500)$
- $\rightarrow\,$ lower energy limit on the DSNB detection window
 - simulation of 1k homogeneously distributed reactor neutrino events with E > 9 MeV

19.09.2017 10 / 27

Reactor Neutrino Background

Reactor Neutrino Background

- \sim 60 reactor neutrino events/d \rightarrow 180k events in 10 years ($R_{reactor}/R_{DSNB} = 4500$)
- $\rightarrow\,$ lower energy limit on the DSNB detection window
 - simulation of 1k homogeneously distributed reactor neutrino events with E > 9 MeV

Forschergruppentreffen JUNO, Hamburg

19.09.2017 10 / 27

19.09.2017

10 / 27

Diffuse Supernova Neutrino Background

2 Simulation Procedure and IBD Event Selection

Background Sources

3

- Reactor Neutrino Background
- Atmospheric Neutral Current Background
- Atmospheric Charged Current Background
- Li9-Background
- Fast Neutrons

Status and Results

- NC reactions of atmospheric neutrinos and antineutrinos of all flavors pose a possible background
- reactions that can mimic an IBD event signature

Reaction channel					
$\nu_x + {}^{12}C \longrightarrow \nu_x +$					
(1)	р	+	¹¹ B		
(2)	n	+	¹¹ C		
(3)	n+p	+	¹⁰ B		
(4)	2p	+	¹⁰ Be		
(5)	2n	+	¹⁰ C		
(6)	n+2p	+	⁹ Be		
(7)	2n+p	+	⁹ B		
(8)	2n+2p	+	⁷ Be		
(9)	2n+3p	+	⁷ Li		

19.09.2017 1

Simulation

 Interactions of atmospheric neutrinos inside the target volume

Reaction channel					
$\overline{\nu_x + {}^{12}\mathrm{C} \longrightarrow \nu_x +}$					
(1)	р	+	¹¹ B		
(2)	n	+	¹¹ C		
(3)	n+p	+	¹⁰ B		
(4)	2p	+	¹⁰ Be		
(5)	2n	+	¹⁰ C		
(6)	n+2p	+	⁹ Be		
(7)	2n+p	+	⁹ B		
(8)	2n+2p	+	⁷ Be		
(9)	2n+3p	+	⁷ Li		
. /	-		T		

19.09.2017 1

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- Oeexcitation of the resulting nucleus

Reaction channel						
ν_{x}	$\overline{\nu_x + {}^{12}C \longrightarrow \nu_x +}$					
(1)	р	+	¹¹ B			
(2)	n	+	¹¹ C			
(3)	n+p	+	¹⁰ B			
(4)	2р	+	¹⁰ Be			
(5)	2n	+	¹⁰ C			
(6)	n+2p	+	⁹ Be			
(7)	2n+p	+	⁹ B			
(8)	2n+2p	+	⁷ Be			
(9)	2n+3p	+	⁷ Li			
. ,	-		— Т			

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- Oeexcitation of the resulting nucleus
- Simulation of final particles in JUNO

Reaction channel					
ν_{x}	$\nu_x + {}^{12}C \longrightarrow \nu_x +$				
(1)	р	+	¹¹ B		
(2)	n	+	¹¹ C		
(3)	n+p	+	¹⁰ B		
(4)	2p	+	¹⁰ Be		
(5)	2n	+	¹⁰ C		
(6)	n+2p	+	⁹ Be		
(7)	2n+p	+	⁹ B		
(8)	2n+2p	+	⁷ Be		
(9)	2n+3p	+	⁷ Li		

19.09.2017 11 / 27

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- Oeexcitation of the resulting nucleus
- Simulation of final particles in JUNO

Reaction channel					
ν_{x}	$\nu_x + {}^{12}C \longrightarrow \nu_x +$				
(1)	р	+	¹¹ B		
(2)	n	+	¹¹ C		
(3)	n+p	+	¹⁰ B		
(4)	2p	+	¹⁰ Be		
(5)	2n	+	¹⁰ C		
(6)	n+2p	+	⁹ Be		
(7)	2n+p	+	⁹ B		
(8)	2n+2p	+	⁷ Be		
(9)	2n+3p	+	⁷ Li		

19.09.2017 11 / 27

12 / 27

• GENIE V2.12.4

• atmospheric neutrino flux: HKKM (Honda) flux for JUNO location¹

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- Oeexcitation of the resulting nucleus
- Simulation of final particles in JUNO

¹http://www.icrr.u-tokyo.ac.jp/mhonda/nflx2014/index.html

- GENIE V2.12.4
- atmospheric neutrino flux: HKKM (Honda) flux for JUNO location¹
 - flavors: $\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{e}, \bar{\nu}_{e}$
 - angle dependent
 - solar activities (min and max)
 - energy range: 100 MeV 4000 GeV

12 / 27

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- Operation of the resulting nucleus
- Simulation of final particles in JUNO

¹http://www.icrr.u-tokyo.ac.jp/mhonda/nflx2014/index.html

- GENIE V2.12.4
- atmospheric neutrino flux: HKKM (Honda) flux for JUNO location¹
- LS target ²
- Cross section from Genie ³

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- Oeexcitation of the resulting nucleus
- Simulation of final particles in JUNO

¹http://www.icrr.u-tokyo.ac.jp/mhonda/nflx2014/index.html ²offline/Detector/Geometry/share/CdGeom.gdml ³hepforge.org/archive/genie/data/2.12.0/DefaultPlusMECwithNC/gxsplFNALsmall.xml Julia Sawatzki (TUM) Forschergruppentreffen JUNO, Hamburg 19.09.2017 12 / 27

Atmospheric Neutral Current Background

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- Object: Deexcitation of the resulting nucleus
- Simulation of final particles in JUNO

- $\bullet\,$ probability that the resulting nucleus is in excited state $\approx 1/3$
- simple shell model of ^{12}C neutrons

- $E_{atm\nu s} >> E_{binding}(nucleons) \rightarrow assume that interaction probability for atmospheric neutrino is the same for each nucleon$
- $\rightarrow\,$ probability that nucleus has a hole in the $S_{1/2}$ shell can be approximated through 2/6=1/3

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- Operation of the resulting nucleus

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

19.09.2017 13 / 27

· 110*

Atmospheric Neutral Current Background

120

		ν	'X +	0 -	\rightarrow	$\nu_x + n$	+ C
			¹¹ (C* –	\longrightarrow	$p + \alpha$ -	$+ {}_{3}^{6}\text{Li}$
							skokokokokokokokok
hannel	* GammaEner	* NeutronEn :	<pre>k ProtonEne</pre>	* DeuteronE	* TritiumEn	* Helium3En	* AlphaEner *
							o la
13	*	* :	× 3.0970588	*	*	*	* 9.4173469 * <i>C</i> 11decavP.root

• γ energy for ResNuclZ=6 and ResNucA=3

- dedecircied and a second s			متحتمت	والمحاصل المحاصل المحاصل المتحق المتحق المتحق المتحق	للمقاملة مل	
ResNuclZ	* ResNuclA	* ResNuclLevel	*	ResNuclEnergy	* R	esNuclPopulation *
Holekolook		tototototototototototototototototototo	okokok		(x)(x)	
3	* 6	* 0	*	0	*	1.435 *
3	* 6	* 1	*	2,186	*	0.2521 *
3	* 6	* 2	*	3,563	*	0.1255 *
3	* 6	* 3	*	4,312	*	0.151 *
3	* 6	* 4	*	5,366	*	0.1024 *
3	* 6	* 5	*	5.65	*	0.1017 *
3	* 6	* 6	*	15.8	*	0.0001363 *
3	* 6	* 7	*	17,985	*	1.265e-05 *
3	* 6	* 8	*	21.5	*	0 *
3	* 6	* 9	*	23	*	0 *
3	* 6	* 10	*	24,779	*	0 *
	**		-	***	ioloioi	

Simulation

Interactions of atmospheric neutrinos inside the target volume

Deexcitation of the resulting nucleus

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- Operation of the resulting nucleus
- Simulation of final particles in JUNO^a

^areads GENIE Files with GtGstTool

Simulation

- Interactions of atmospheric neutrinos inside the target volume
- 2 Deexcitation of the resulting nucleus
- Simulation of final particles in JUNO^a

^areads GENIE Files with GtGstTool

19.09.2017

- GENIE simulation: $2 \cdot 10^6$ atmospheric neutrino events ($E_{\nu} < 10$ GeV)
- preselection: NC and QEL (ightarrow 20% pprox 400k events)
- 20k events simulated with offline out of preselected events

19.09.2017

16 / 27

Diffuse Supernova Neutrino Background

2 Simulation Procedure and IBD Event Selection

Background Sources

3

- Reactor Neutrino Background
- Atmospheric Neutral Current Background

Atmospheric Charged Current Background

- Li9-Background
- Fast Neutrons

Status and Results

Atmospheric Charged Current Background

- GENIE output (1 \cdot 10⁶ events) of $\bar{\nu}_e$ reactions on H
 - assume that muons can be tagged ightarrow no simulation of u_{μ} , $ar{
 u}_{\mu}$
 - $u_e + n
 ightarrow p + e^-
 ightarrow$ no neutron
 - $ar{
 u}_{e}$ CC reaction on $^{12}{
 m C}
 ightarrow ^{12}{
 m B} + e^{+}
 ightarrow$ no neutron

Atmospheric Charged Current Background

- preselection: $E_{
 u} < 100$ MeV and CC ightarrow 75k events
- simulation of 10k AtmCC events (out of 75k events)

→ GENIE can simulate neutrinos with $E_{\nu} < 100$ MeV, although flux file has no information in this energy region → How does GENIE treat this scenario?

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

Rate Estimation

 $\bullet\,$ use shape information of atmospheric neutrino ${\rm flux}^4$ between 10 MeV and 1 GeV

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

19.09.2017

Rate Estimation

- $\bullet\,$ use shape information of atmospheric neutrino flux^4 between 10 MeV and 1 GeV
- cross section from Genie (qel-cc-p)

$$ightarrow \ R_{CC} = 325 \left(rac{R_{FV}}{16.78}
ight)^3$$
 events per 10y

⁴Fluka: Battistoni:2005pd

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

19.09.2017

Rate Estimation

Irreducible Background!

- \rightarrow get information of AtmCC background from higher energy range
- \rightarrow subtract the background from the data

19.09.2017

18 / 27

Diffuse Supernova Neutrino Background

2 Simulation Procedure and IBD Event Selection

Background Sources

3

- Reactor Neutrino Background
- Atmospheric Neutral Current Background
- Atmospheric Charged Current Background
- Li9-Background
- Fast Neutrons

Status and Results

⁹Li Background

- cosmogenic isotopes that are produced by cosmic muons in the LS
- ⁹Li can decay via $\beta^$ decay ($T_{1/2} = 178 \text{ ms}$) into excited state (50.8%) of ⁹Be
- ightarrow prompt signal
 - excited states decay into $2\alpha + n$
- ightarrow delayed signal

Li9-Background

Simulation of ⁹Li Background

19.09.2017

20 / 27

- simulate 10k β -decays into excited state
- Li9.exe based on DetSimV2/PhysSim/Li9He8Decay.cc ⁴

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

⁹Li Background Rate

19.09.2017

21 / 27

• based on KamLand⁵ results: $Y_{^9Li} = 2.2 \cdot 10^{-7} \mu^{-1} g^{-1} cm^2$ • muon rate in LS:

•
$$R_{\mu} = 3.6 \text{ Hz}$$

• mean muon track length $L_{\mu}=23$ m

$$\rightarrow R = 2.44 \cdot 10^{-8} \cdot R_{FV}^3 [cm^3] \stackrel{16m}{=} 100 \text{ per day}$$
$$R^{\beta-n} = BR \cdot R = 0.508 \cdot R = 51 \text{ per day}$$

⁵Abe:2009aa

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

Li9-Background

Fiducial Volume Cut

- ⁹Li production close to muon track
- possible to veto a cylinder with $r_{veto} = 3m$ around muon track for certain time $t_{veto} = 1.2s$
- dead time of the detector $t_{dead} \approx 0.14$

Fiducial Volume Cut

- ⁹Li production close to muon track
- possible to veto a cylinder with *r_{veto}* = 3m around muon track for certain time *t_{veto}* = 1.2s
- dead time of the detector $t_{dead} \approx 0.14$
- residual $^9{\rm Li}$ rate $\approx 2\%$
- $ightarrow ~R^{eta-n} = 51 \cdot 0.02 pprox 1$ per day

19.09.2017

Li9-Background

Fiducial Volume Cut

- ⁹Li production close to muon track
- possible to veto a cylinder with $r_{veto} = 3m$ around muon track for certain time $t_{veto} = 1.2s$
- dead time of the detector $t_{dead} \approx 0.14$
- $\bullet\,$ residual ^9Li rate $\approx 2\%$
- $ightarrow~R^{eta-n}=51\cdot0.02pprox1$ per day

Reducible Background

Julia Sawatzki (TUM)

 \rightarrow pulse shape analysis: get positron/electron discrimination efficiency through implementation of ortho-positronium-lifetime

▲ □ ► ▲ □ ► ▲

19.09.2017

Li9-Background

Fiducial Volume Cut

- ⁹Li production close to muon track
- possible to veto a cylinder with $r_{veto} = 3m$ around muon track for certain time $t_{veto} = 1.2s$
- dead time of the detector $t_{dead} \approx 0.14$
- $\bullet\,$ residual ^9Li rate $\approx 2\%$
- $ightarrow \ R^{eta-n} = 51 \cdot 0.02 pprox 1$ per day

Reducible Background

Julia Sawatzki (TUM)

 \rightarrow pulse shape analysis: get positron/electron discrimination efficiency through implementation of ortho-positronium-lifetime

-

19.09.2017

19.09.2017

22 / 27

Diffuse Supernova Neutrino Background

2 Simulation Procedure and IBD Event Selection

Background Sources

3

- Reactor Neutrino Background
- Atmospheric Neutral Current Background
- Atmospheric Charged Current Background
- Li9-Background
- Fast Neutrons
- Status and Results

Fast Neutron BG

- produced by cosmic muons in the surrounding rock (invisible for muon veto)
 - prompt signal: neutron scattering reactions (obtain energy of fast neutron)
 - delayed signal: capture of the thermalized neutron
- flat energy distribution with⁶: $R_{year} = 3.4$ between 11 and 30 MeV
- radial dependency: $R_{FastN} = 1.32 \cdot 10^{-17} \exp{(2.05 \cdot R_{FV}[m])}$ per day

19.09.2017 23 / 27

Fast Neutron BG

- produced by cosmic muons in the surrounding rock (invisible for muon veto)
- flat energy distribution with⁶: $R_{year} = 3.4$ between 11 and 30 MeV
- radial dependency: $R_{FastN} = 1.32 \cdot 10^{-17} \exp(2.05 \cdot R_{FV}[m])$ per day

19.09.2017

24 / 27

Diffuse Supernova Neutrino Background

2 Simulation Procedure and IBD Event Selection

Background Sources

- Reactor Neutrino Background
- Atmospheric Neutral Current Background
- Atmospheric Charged Current Background
- Li9-Background
- Fast Neutrons

Status and Results

Preliminary Results

- 10k DSNB events
- (20k atmospheric NC events) \rightarrow Rate + PDS!!!
- 10k atmospheric CC events ($E_{
 u} < 100$ MeV)
- 10k ${}^{9}\text{Li}-\beta$ -n decays
- 1k reactor neutrino events (> 9 MeV)

19.09.2017 25 / 27

Status and Results

AtmCC	measure spectrum in the dominant energy region
	for extrapolation to lower energies
AtmNC	PULSE SHAPE DISCRIMINATION!!!!
reactor ν s	sets lower energy cut
⁹ Li	sets lower energy cut
fast neutrons	subdominant, subtract statistically (rate informa-
	tion from position dependency), important for
	AtmCC extrapolation

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

19.09.2017 26 / 27

Status and Results

Proposal for DSNB Detection Strategy

Forschergruppentreffen JUNO, Hamburg

19.09.2017

Thank you!

julia.sawatzki@ph.tum.de

27 / 27

Julia Sawatzki (TUM)

Forschergruppentreffen JUNO, Hamburg

19.09.2017