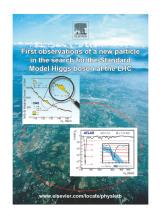


SM and BSM H $\rightarrow \tau\tau$ analyses with ATLAS and CMS

Artur Gottmann | April 10, 2018

INSTITUT FÜR EXPERIMENTELLE TEILCHENPHYSIK (ETP)

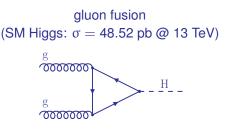


Introduction

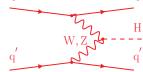
- July 4, 2012: Higgs boson discovered as last missing piece of SM
- Following measurements of
 - Spin, parity
 - couplings to fermions and bosons
 - differential cross-sections
 - decay width constraints

so far compatible with SM expectations

LHC Run II data-taking at $\sqrt{s} = 13$ TeV

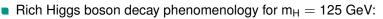

In total \approx 100 fb⁻¹ delivered from 2015 to 2017

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

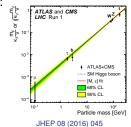

Relevant production modes

Dominant production mode despite of being loop suppressed, due to large number of gluons in a proton

More than a factor 10 smaller, but clear signature \rightarrow helps to enrich signal in appropriate event categories vector boson fusion (SM Higgs: $\sigma = 3.779 \text{ pb} \textcircled{0}{}_{q} 13 \text{ TeV}$)


Cross-section values from CERN Yellow Report 4 of the LHCHXSWG for $m_H = 125.09$ GeV

Artur Gottmann – SM and BSM H $\rightarrow \, \tau \tau$ analyses with ATLAS and CMS


April 10, 2018

<ロト <回ト < 注ト < 注ト

Higgs boson decays

- Decays to massive bosons W and Z
- Decays to photons via loops
- Fermions couple to the Higgs boson via Yukawa interactions
- Decays to fermions:
 - $H \rightarrow b\bar{b}$ (see Adinda's talk tomorrow at 16:00):
 - Highest branching ratio of 58 %
 - But also high QCD background
 - Requires advanced algorithms for b-jets identification
 - $H \rightarrow \tau \tau$:
 - Smaller branching ratio of 6 %
 - But main background also smaller
 - Muons & electrons in di-τ final state
 - \rightarrow Good tags for selection

Branching ratio values from CERN Yellow Report 4 of the LHCHXSWG for SM Higgs boson with $m_H = 125.09$ GeV

《ロ〉 《聞》 《注》 《耳》

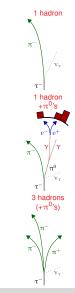
4/26

Ξ

Run II H $\rightarrow \tau\tau$ analyses

Overview

Run II H $\rightarrow \tau\tau$ analyses recently published & discussed during this talk


- SM H $\rightarrow \tau \tau$ with CMS: published in PLB 779 (2018) 283
- BSM H $\rightarrow \tau \tau$ with ATLAS: published in JHEP 01 (2018) 055
- BSM H → ττ with CMS: submitted to JHEP (preprint: arXiv:1803.06553)

SM H $\rightarrow \tau\tau$ as part of ttH analyses, e.g. with ATLAS: submitted to Phys.Rev.D (preprint: arXiv:1712.08891) \rightarrow Details presented by Thomas tomorrow at 16:30

<ロ> < 同 > < 同 > < 三 > < 三 > 三 9 0 0 0

Hadronic τ -lepton (τ_h) reconstruction

• 4 di- τ final states considered as signal regions:

 $\tau_h \tau_h$ $e \tau_h$ $\mu \tau_h$ $e \mu \rightarrow \approx 90$ % with at least one τ_h

- Motivates to have a good τ_h reconstruction
- E.g. as discussed for the case of CMS:
 - Start with a jet reconstructed by the anti-k_T algorithm
 - Find its reconstructed charged hadron constituents
 - Reconstruct nearby neutral pion candidates:
 - $\pi^0 \rightarrow \gamma \gamma$ at almost 100 %
 - $\gamma \rightarrow e^+e^-$: high conversion probability
 - $\bullet\,$ Combine electrons and photons in a $\eta-\varphi$ window
 - Build (π[±],π⁰) combinations to determine the best-matching decay-mode
 - Discriminate against gluon- & quark-jets, electrons and muons

トイヨトイヨト

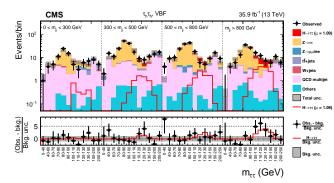
SM H $\rightarrow \tau\tau$ with CMS: strategy

- Used decay channels: $\tau_h \tau_h$ $e \tau_h$
 - Identify well-isolated electrons, muons & τ_h-leptons
 - Construct di-τ pair
- Main categories:
 - O-jet: to target gluon fusion production
 - 2-jet VBF: targeting VBF production
 - Boosted: defined to collect events failing the first two categories

 $\mu \tau_h$

eμ

• Choice of final discriminators depends on channel & category \rightarrow Both 1D and 2D discriminators used for the likelihood fit


	0-jet	2-jet VBF	Boosted	m _{vis} : visible di-τ mass
$\tau_h\tau_h$	m _{ττ}	$m_{\tau\tau}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$	$m_{\tau\tau}$: full di- τ mass m_{ii} : invariant di-jet mass
$\mu \tau_h$	$m_{vis} vs \tau_h DM$	$m_{ au au}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$	$p_T^{\tau\tau}$: full di- τp_T
$e\tau_h$	$m_{vis} vs \tau_h DM$	$m_{ au au}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$	p_{T}^{μ} : muon p_{T}
eμ	$m_{vis} vs p_T^{\mu}$	$m_{\tau\tau}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$	τ_h DM: decay mode

トイヨトイヨトー

=

SM H $\rightarrow \tau\tau$ with CMS: $\tau_{\text{h}}\tau_{\text{h}}$ 2-jet VBF

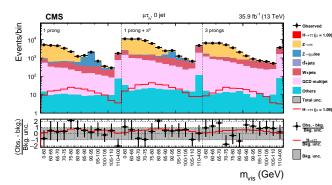
PLB 779 (2018) 283

		0-jet	2-jet VBF	Boosted
τ_{h}	τ_h	$m_{ au au}$	$m_{\tau\tau} \text{ vs. } m_{jj}$	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$
μ	τ _h	$m_{vis} vs \tau_h DM$	$m_{\tau\tau}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$
er	t _h	m _{vis} vs τ _h DM	$m_{ au au}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$
е	μ	$m_{vis} vs p_T^{\mu}$	$m_{ au au}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$

 Most sensitive category

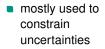
- Unrolled 2D distribution after the global fit
- Largest signal excess in the m_{jj} > 800 GeV bin

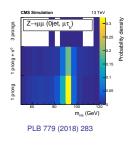
Artur Gottmann – SM and BSM H $\rightarrow \, \tau \tau$ analyses with ATLAS and CMS


イロン 人間 とくほう 人口 と

8/26

Ξ


SM H $\rightarrow \tau\tau$ with CMS: $\mu\tau_{\text{h}}$ 0-jet



PLB 779 (2018) 283

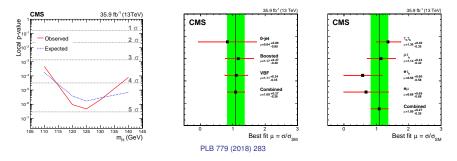
	0-jet	2-jet VBF	Boosted
$\tau_h \tau_h$	m _{ττ}	$m_{ au au}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$
$\mu \tau_h$	$m_{vis} \text{ vs } \tau_h \text{ DM}$	$m_{\tau\tau}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$
$\text{e}\tau_{\text{h}}$	$m_{vis} vs \tau_h DM$	$m_{\tau\tau}$ vs. m_{jj}	$m_{\tau\tau}$ vs. $p_T^{\tau\tau}$
eμ	$m_{vis} vs p_T^{\mu}$	$m_{ au au}$ vs. m_{jj}	$m_{ au au}$ vs. $p_T^{ au au}$

 Unrolled 2D distribution after the global fit

Artur Gottmann – SM and BSM H $\rightarrow \tau\tau$ analyses with ATLAS and CMS

April 10, 2018

《日》《圖》《意》《見》


9/26

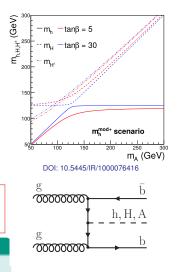
Ξ

SM H $\rightarrow \tau\tau$ with CMS: results

- Fitted signal strength: $\mu = 1.09^{+0.27}_{-0.26}$
- Most sensitive category: VBF, most sensitive channel: $\tau_h \tau_h$

Discovery from single channel, single experiment

@ 125 GeV: observed significance of 4.9σ , combined with Run I: 5.9σ


Higgs sector in SM extensions

- Observed Higgs boson could also be part of an extended Higgs sector, e.g. in MSSM
- Additional expected Higgs bosons in this case: scalars h & H, pseudoscalar A, charged H[±]
- At LO in MSSM only 2 free parameters: m_A and $\tan \beta = \frac{v_d}{v_u}$
- Additional parameters entering at HO fixed to define MSSM benchmark scenarios, e.g. m^{mod+} and hMSSM
- Couplings of H, A to down-type fermions enchanced at high tanβ
- \rightarrow Enchancement of H/A $\rightarrow \tau\tau$ decay
- \rightarrow Enchancement of production in association with b-quarks

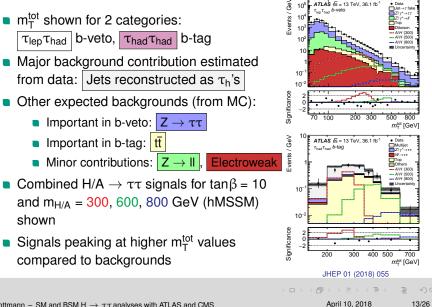
b-tagging to identify b-jets

And use the number of b-jets for categorisation

<ロ> < 国 > < 国 > < 国 > < 国 > < 国 > <

BSM H $\rightarrow \tau\tau$ with ATLAS: strategy

- To avoid biases in signal modelling: simple categorisation
 - 2 signal regions: $\tau_{had}\tau_{had}$, $\tau_{lep}\tau_{had} = e\tau_h + \mu\tau_h$
 - Construct di-τ pairs from well-identified & isolated electrons, muons and hadronic τ-leptons
 - 2 categories defined by the number of b-tagged jets:
 - b-tag: at least 1 b-jet
 - b-veto: no b-jets

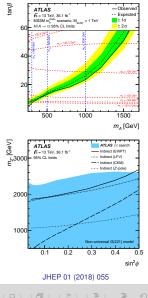

Focus on heavy resonances H and A

 \rightarrow total transverse mass m_T^{tot} as $\left. final \, discriminator \right.$

$$\begin{split} m_{T}^{tot} &= \sqrt{m_{T}^{2}(p_{T}^{\tau_{1}},p_{T}^{miss}) + m_{T}^{2}(p_{T}^{\tau_{2}},p_{T}^{miss}) + m_{T}^{2}(p_{T}^{\tau_{1}},p_{T}^{\tau_{2}})}, \\ m_{T} &= \sqrt{2p_{T}p_{T}^{'}\left[1 - \cos\left(\Delta\varphi\right)\right]} \end{split}$$

Artur Gottmann – SM and BSM H $\rightarrow \tau\tau$ analyses with ATLAS and CMS

BSM H $\rightarrow \tau \tau$ with ATLAS: m^{tot}_T


shown

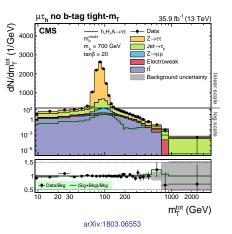
BSM H $\rightarrow \tau\tau$ with ATLAS: results

Interpretations in BSM benchmark scenarios

- Signal model: degenerate heavy H/A resonance
- Limits set on MSSM m_h^{mod+} (shown) and hMSSM
- Tested parameter space extended compared to Run I
- Higgs p_T @ NLO QCD precision
 → assuming SM couplings in loops of gluon fusion production
- Additional study: exclusion limits on Z['] models

April 10, 2018

BSM H $\rightarrow \tau\tau$ with CMS: strategy



Similar strategy as with ATLAS:

Decay channels:

 $\tau_h \tau_h$ $e \tau_h$ $\mu \tau_h$ $e \mu$

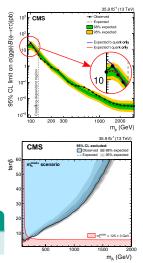
- Similar main categories: no b-tag & b-tag, subdivided further to increase sensitivity at high mass
- Same final discriminator m^{tot}_T
- Main backgrounds: Jet $\rightarrow \tau_h$ & Z $\rightarrow \tau\tau$

Artur Gottmann – SM and BSM H $\rightarrow \, \tau \tau$ analyses with ATLAS and CMS

April 10, 2018

ヘロン 人間 とくぼ とくほん

BSM H $\rightarrow \tau\tau$ with CMS: results



- Model-independent limits in gluon fusion:
 - Assuming SM couplings
 - Checking coupling dependence with t-only & b-only limits \rightarrow relevant only for low m_{Φ}
- Model-dependent signal modelling:
 - combined signal template for h, H & A
 - tanβ dependence in gluon fusion Higgs p_T taken into account by a reweighting method

Similar results from both experiments

Significant constraints on BSM models

arXiv:1803.06553

くロト (過下) (日下) (日下)

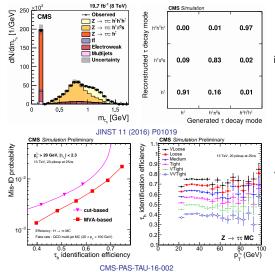
Conclusions

- \blacksquare SM H $\rightarrow \tau\tau$ established in single channel, single experiment analysis
- Next: explore channel to measure properties of the discovered Higgs boson
- Significantly extended parameter space to search for extensions of the Higgs sector
- Various improvements in categorisation, background & signal modelling

 $H \rightarrow \tau \tau$: journey goes on

Intermediate results on the way to analyse the full LHC Run II dataset

more than 100 fb^{-1}


Backup

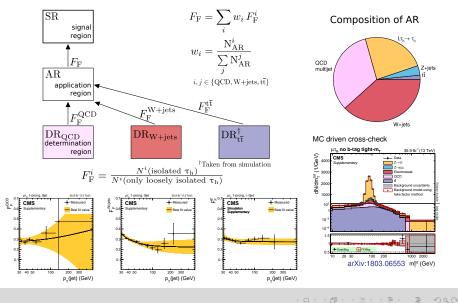
Artur Gottmann – SM and BSM H $\rightarrow \, \tau \tau$ analyses with ATLAS and CMS

April 10, 2018

τ_h reconstruction performance

$$\label{eq:theta} \begin{split} \tau_h \mbox{ reconstruction in decay modes, as} \\ introduced \mbox{ for Run I. Decay modes are} \\ reconstructed \mbox{ correctly at 83 \% or} \\ higher \end{split}$$

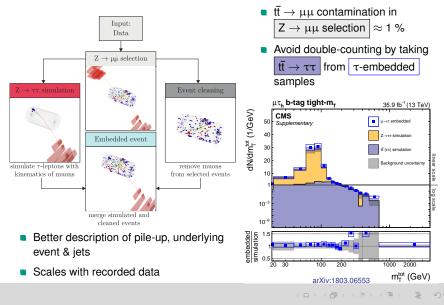
 $\begin{aligned} \tau_h \text{ identification performance in Run II.} \\ \text{MVA based-algorithm shows a better} \\ \text{performance than the cut-based} \\ \text{approach. Different efficiency working} \\ \text{points are defined.} \end{aligned}$


Artur Gottmann – SM and BSM H $\rightarrow \tau\tau$ analyses with ATLAS and CMS

April 10, 2018

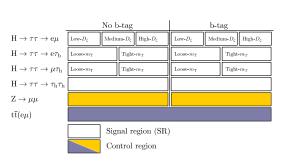
《日》 《圖》 《문》 《月》

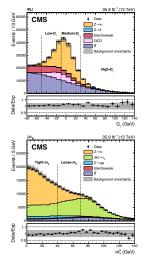
Jet $\rightarrow \tau_{\text{h}}$ estimation



Artur Gottmann – SM and BSM H $\rightarrow \, \tau \tau$ analyses with ATLAS and CMS

April 10, 2018

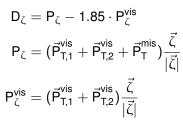

$\tau\text{-}\text{Embedding}$ for $\textbf{Z}\to\tau\tau$ background


Categorisation in BSM H $\rightarrow \tau\tau$ with CMS

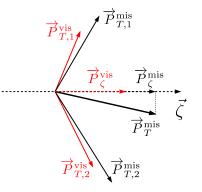
arXiv:1803.06553

- b-tag: at least one b-tagged jet (enriched with signal from b-associated production)
- No b-tag: no b-tagged jets (targeting mainly gluon fusion)

arXiv:1803.06553


Artur Gottmann – SM and BSM H $\rightarrow \, \tau \tau$ analyses with ATLAS and CMS

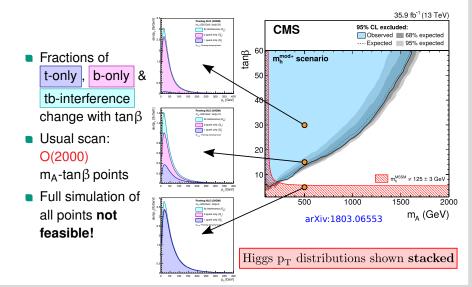
April 10, 2018


イロン 人間 とくほう イヨン

22/26

 \equiv

April 10, 2018


くロン 人間 とくほう 人口 と

23/26

3

Scanning through the $m_{\text{A}}\text{-}\text{tan}\beta$ grid

ヘロン 人間 とくぼ とくほん

Main idea

Reduce the problem to **one dimension** (m_A) by taking advantage of the tan β -dependent Yukawa coupling modifiers Y_i . Transformation:

$$\begin{split} \hat{\sigma} &= \left(\frac{\hat{\mathbf{Y}}_{t}}{\mathsf{Y}_{t}}\right)^{2} \boxed{\sigma_{t}(\mathsf{Q}_{t})} + \left(\frac{\hat{\mathbf{Y}}_{b}}{\mathsf{Y}_{b}}\right)^{2} \boxed{\sigma_{b}(\mathsf{Q}_{t})} + \\ & \left(\frac{\hat{\mathbf{Y}}_{t}\hat{\mathbf{Y}}_{b}}{\mathsf{Y}_{t}\mathsf{Y}_{b}}\right) \boxed{\left(\sigma_{t+b}(\mathsf{Q}_{tb}) - \sigma_{t}(\mathsf{Q}_{tb}) - \sigma_{b}(\mathsf{Q}_{tb})\right)} \end{split}$$

• t-only, b-only & tb-interference computed for a reference tan $\beta \rightarrow$ In POWHEG: 5 samples for each mass m_{φ}

- **Reference** Y_t & Y_b remove reference tanβ dependence
- **Target** $\hat{Y}_t \& \hat{Y}_b$ inject desired tan β dependence

<ロ> < 同 > < 同 > < 三 > < 三 > 三 9 0 0 0

Considered MSSM benchmark scenarios

m_h^{mod+} (arXiv:1302.7033):

$$\begin{split} m_t &= 173.2 \ {\rm GeV}, \\ M_{\rm SUSY} &= 1000 \ {\rm GeV}, \\ \mu &= 200 \ {\rm GeV}, \\ M_2 &= 200 \ {\rm GeV}, \\ X_t^{\rm OS} &= 1.5 \ M_{\rm SUSY} \ ({\rm FD\ calculation}), \\ X_t^{\rm \overline{MS}} &= 1.6 \ M_{\rm SUSY} \ ({\rm RG\ calculation}), \\ A_b &= A_\tau = A_t, \\ m_{\tilde{g}} &= 1500 \ {\rm GeV}, \\ M_{\tilde{l}_a} &= 1000 \ {\rm GeV} \ . \end{split}$$

hMSSM (arXiv:1502.05653):

All parameters (under some assumptions) of HO MSSM are constrained by the mass of the light scalar, h: \approx 125 GeV

□ > < ⊕
 April 10, 2018

26/26

3