

State-of-the-art of mixed QCD-EW predictions

Christian Schwinn

— RWTH Aachen —

12.04.2018

QCD corrections

• **NLO** automation:

One-loop providers (BlackHat, GoSam, MadLoop, OpenLoops, Recola) interfaced with Monte Carlo (Sherpa, MadGraph, Munich, ...), matching to Parton showers (MC@NLO, POWHEG), merging of different jet multiplicities(MINLO, MEPS@NLO, FxFx,...)

• **NNLO** for $2 \rightarrow 2$ processes VV Vj, Hj, VH, $t\bar{t}$, HH

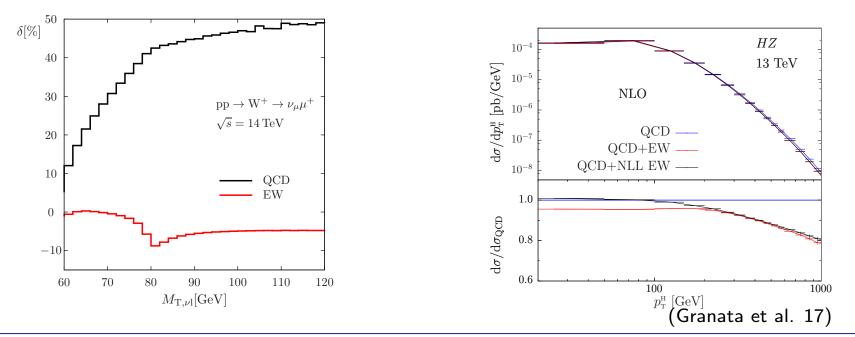
EW corrections

• NLO automation: published results for specific processes

 $(\Rightarrow talk by Kuttimalai)$

public release in current/next versions of one-loop frameworks

$pp ightarrow { m e}^+ u_{ m e} \mu^- ar{ u}_\mu$	$\sigma^{ m LO} \ [m fb]$	$\sigma^{ m NLO}_{ m EW} \ [m fb]$	$\Delta \sigma^{ m LO} \ [\sigma] [\%]$	$\Delta \sigma_{ m EW}^{ m NLO} \ [\sigma] \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	
average	448.5414[31]	438.1902[56]			
Munich+OpenLoops MoCaNLO+Recola Sherpa+GoSam/OpenLoops/Recola MadGraph5_aMC@NLO	448.538[10]	438.193[13]	$\begin{array}{rrr} +1.6 & +0.01 \\ -0.4 & -0.01 \\ -1.4 & -0.01 \\ -0.0 & -0.00 \end{array}$	$\begin{array}{rrr} +0.2 & +0.01 \\ -0.4 & -0.01 \end{array}$	(LesHouches 2017)



- Expectation for generic observables: $\Delta NLO_{EW} \sim \Delta NNLO_{QCD}$
- Enhanced effects:
 - FSR for EW resonances (\Rightarrow 100 MeV effect on M_W measurement)

(Photos (Golonka/Was 06), γ shower in Pythia, Sherpa)

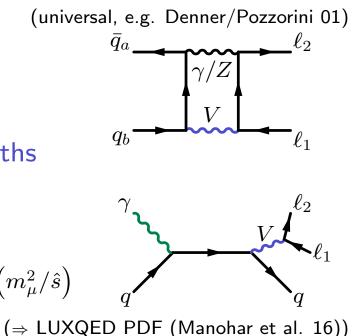
– Sudakov logarithms $\alpha \log^{2,1}(Q^2/M_W^2)$ at large Q^2

(universal, e.g. Denner/Pozzorini 01)

Mixed QCD-EW predictions

SM@LHC 2018

Relevance of EW corrections


- Expectation for generic observables: $\Delta NLO_{EW} \sim \Delta NNLO_{QCD}$
- Enhanced effects:
 - FSR for EW resonances (\Rightarrow 100 MeV effect on M_W measurement)

(Photos (Golonka/Was 06), γ shower in Pythia, Sherpa)

– Sudakov logarithms $\alpha \log^{2,1}(Q^2/M_W^2)$ at large Q^2

Features of EW corrections

- connecting initial and final state
- consistent treatment of decay widths necessary (e.g. complex mass scheme)
- reconstruction of "bare" muons
 - \Rightarrow logarithmic dependence $\sim \alpha \log \left(m_{\mu}^2 / \hat{s} \right)$
- Photon-induced processes

Importance of mixed $O(\alpha \alpha_s)$ corrections?

- Expectation for generic observables: $NNLO_{EW/QCD} \sim N^3LO_{QCD}$
- \Rightarrow relevant for precision physics: DY, $gg \rightarrow H$ (Talks by Piccinini, Lindert)
 - Dominant effects from FSR/Sudakov expected to factorize; relevant for $t\bar{t}$, VH, V + jets... (Talks by Lindert, Pagani)

Impact on DY-type processes:

• *M_W*-measurement:

(Dittmaier/Huss/CS 15; Carloni Calame et al. 16)

 $|\Delta M_W^{\rm NNLO}| \approx 15 \ {\rm MeV}$

(approximately included in current analysis through NLO-QCD+Photos)

• Sudakov corrections: scale uncert. KSS δ_{add} 20 Estimate of $\mathcal{O}(\alpha \alpha_s)$ corrections 10 δ [%] larger than NNLO-QCD scale -10 uncertainty for $M_{\ell\ell} > 2 \text{TeV}$ -20 -30 (Campbell/Wackeroth/Zhou 16) 1000 2000 3000 4000 5000 6000 7000 8000 M(I⁺I⁻) [GeV]

3

Features of mixed EW-QCD corrections

- Classification by orders of α and α_s
- Status of full NNLO calculations

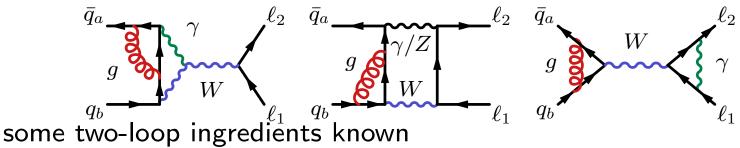
Approaches to approx. $\mathcal{O}(\alpha \alpha_s)$ corrections

- naive factorization of *K*-factors
- matching of EW corrections and parton showers
- Pole approximation for resonant processes

Recent examples

- $t\bar{t}$ (additive/multiplicative combination with NNLO QCD: Czakon et al. 17,
 - PS merging: Gütschow et al. 18)
- V + jets (PS merging: Kallweit et al. 15, MC-reweighting: Lindert et al. 17)
- Drell-Yan (Pole approximation: Dittmaier/Huss/CS 14/15;

Parton shower matching Carloni Calame et al. 16,...)



Mixed QCD-EW predictions

Full NNLO QCD EW corrections for DY:

Two-loop diagrams with different mass scales, finite widths:

 $(\mathcal{O}(\alpha_s \alpha) \text{ corrections to Z/W decay widths: Czarnecki/Kühn 96; Kara 13,$

two-loop amplitudes Kotikov/Kühn/Veretin 07; Kilgore/Sturm 12;


Master integrals: Bonciani et al. 16; v.Manteuffel/Schabinger 17)

QCD \otimes **EW corrections** to $gg \rightarrow H$: (Bonetti et al. 17/18 \Rightarrow talk by Lindert)

- 3-loop diagrams calculated
- Real corrections in soft approximation

$$\frac{\sigma_{\rm QCD}^{\rm NLO}}{\sigma_{\rm QCD}^{\rm LO}} \approx \frac{\sigma_{\rm EW/QCD}^{\rm NLO}}{\sigma_{\rm EW/QCD}^{\rm LO}} \approx 5.4\%$$

• confirms result from $M_{W/Z} \gg M_H$ limit

(Anastasiou et al. 08)

Parton-level combinations:

- Additive: $\sigma_{\text{QCD}+\text{EW}}^{\text{NLO}} = \sigma_{\text{LO}} + \Delta \sigma_{\text{QCD}}^{\text{NLO}} + \Delta \sigma_{\text{EW}}^{\text{NLO}} = \sigma_{\text{LO}} K_{\text{QCD}}^{\text{NLO}} + \Delta \sigma_{\text{EW}}^{\text{NLO}}$
- Multiplicative: $\sigma_{\text{QCD}\times\text{EW}}^{\text{NLO}} = \sigma_{\text{QCD}+\text{EW}}^{\text{NLO}} + \frac{\Delta \sigma_{\text{QCD}}^{\text{NLO}} \Delta \sigma_{\text{EW}}^{\text{NLO}}}{\sigma_{\text{LO}}} = \sigma_{\text{EW}}^{\text{NLO}} K_{\text{QCD}}^{\text{NLO}}$ (schematic, ignores e.g. use of PDFs at different order)
 - expected to capture factorizing soft-QCD/Sudakov-EW effects leading to large corrections
 - misses simultaneous hard photon and gluon emission, non-factorizing virtual effects
 - scale appropriate for $K_{\text{QCD}}^{\text{NLO}}$ might be changed by γ -FSR
- Use $\sigma_{\text{QCD} \times \text{EW}}^{\text{NLO}} \sigma_{\text{QCD} + \text{EW}}^{\text{NLO}}$ as error estimate?
 - likely overestimates error in regions dominated by soft-QCD/Sudakov-EW (where corrections are large)
 - appropriate elsewhere (where corrections are small)

Matching of NLO-EW corrections to QCD shower

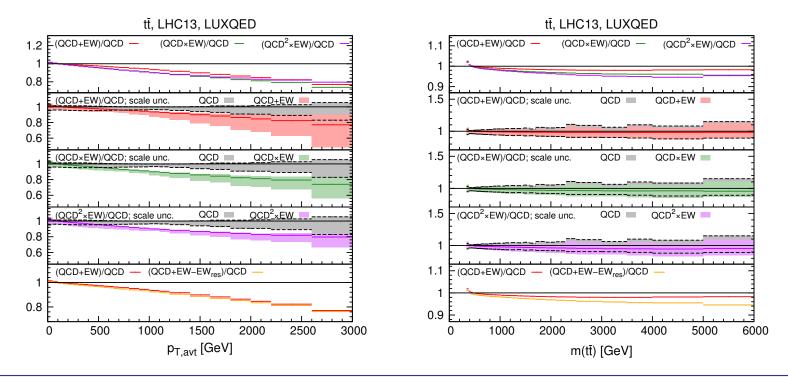
- Modelling of $\mathcal{O}(\alpha_s \alpha)$ effects from collinear gluon emission
 - Drell-Yan (Bernaciak/Wackeroth 12; Barzè et al. 12/13; Carloni Calame et al.;

Mück/Oymanns 16)

8

- HV, HVj (OpenLoops+MINLO/POWHEG: Granata et al. 17)

Needs resonance-aware matching

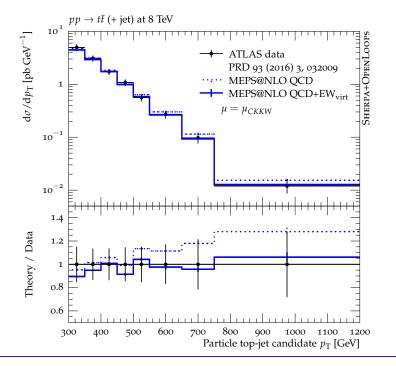

- Merging of EW corrections for different jet multiplicities, includes real-gluon emission of NNLO $O(\alpha_s \alpha)$ corrections
 - so far only in EW_{virt} approximation in OpenLoops+Sherpa:
 - * V + 1, 2 jets (Kallweit et al. 15)
 - * $t\bar{t}$ and $t\bar{t}j$ (Gütschow et al. 18)
 - EW_{virt} appropriate for Sudakov effects,
 full NLO-EW needed for precision near resonances

Additive/Multiplicative combination of NLO-EW and NNLO-QCD (Czakon et al. 17)

- EW = $LO_{\mathcal{O}(\alpha_s \alpha)} + NLO_{\mathcal{O}(\alpha_s^2 \alpha)} + LO_{(\alpha^2)} + NLO_{\mathcal{O}(\alpha_s \alpha^2) + \mathcal{O}(\alpha^3)}$
- γq initial state included in $LO_{\mathcal{O}(\alpha_s \alpha)}$
- $EW \times QCD = EW + QCD + (K_{QCD}^{NLO} 1)NLO_{\mathcal{O}(\alpha_s^2 \alpha)}$ expected to describe NNLO $EW_{Sudakov} \times QCD_{soft}$ corrections at $\mathcal{O}(\alpha_s^3 \alpha)$.

EWres

Additive/Multiplicative combination of NLO-EW and NNLO-QCD (Czakon et al. 17)


• $\mathrm{EW} = \mathrm{LO}_{\mathcal{O}(\alpha_s \alpha)} + \mathrm{NLO}_{\mathcal{O}(\alpha_s^2 \alpha)} + \mathrm{LO}_{(\alpha^2)} + \mathrm{NLO}_{\mathcal{O}(\alpha_s \alpha^2) + \mathcal{O}(\alpha^3)}$

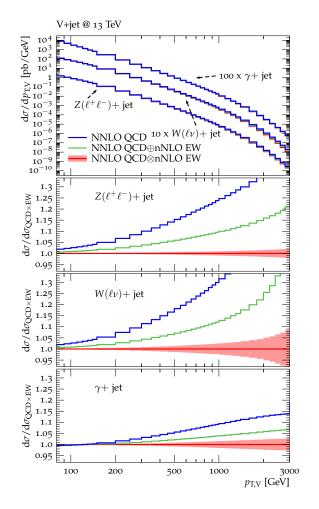
- γq initial state included in $LO_{\mathcal{O}(\alpha_s \alpha)}$
- EW × QCD = EW + QCD + $(K_{\text{QCD}}^{\text{NLO}} 1)$ NLO $_{\mathcal{O}(\alpha_s^2 \alpha)}$ expected to describe NNLO EW_{Sudakov} × QCD_{soft} corrections at $\mathcal{O}(\alpha_s^3 \alpha)$.

EWres

Parton-shower merging of $t\bar{t}$ and $t\bar{t}j$ with NLO QCD+EW (Gütschow, Lindert, Schönherr 18)

- Includes exact virtual EW corrections, real γ in YFS
- merged with $t\bar{t} + 2, 3, 4j$ at LO

Detailed analysis of uncertainties for V + j


in context of dark-matter searches

• Higher-order QCD and EW corrections included by MC reweighting

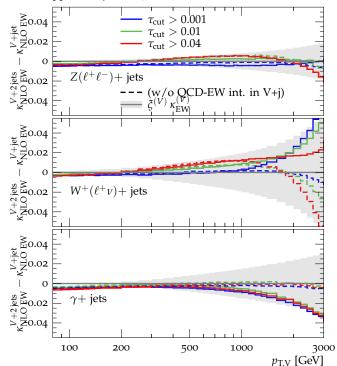
$$\frac{d\sigma_{Vj}}{dp_T^V dy} = \frac{d\sigma_{Vj}^{\rm MC}}{dp_T^V dy} \left[\frac{d\sigma_{Vj}^{\rm th}/dp_T^V}{d\sigma_{Vj}^{\rm MC}/dp_T^V} \right]$$

- nNLO_{EW} includes NLL Sudakov logs $\alpha^2 \ln^{4,3} (Q^2/M_V^2)$
- Additive and multiplicative combination of EW and QCD corrections
- Estimate of $\mathcal{O}(\alpha \alpha_s)$ uncertainty

 $\Delta K_{\alpha\alpha_s}^{\text{NNLO}} = \xi(K_{\text{EW}\otimes\text{QCD}} - K_{\text{EW}\oplus\text{QCD}})$ $\xi = 0.1(Z), \ 0.2(W), \ 0.4(\gamma) \text{ estimated}$ from NLO EW corrections to V+2j. (Lindert et al. 17)

Detailed analysis of uncertainties for V + j

in context of dark-matter searches


• Higher-order QCD and EW corrections included by MC reweighting

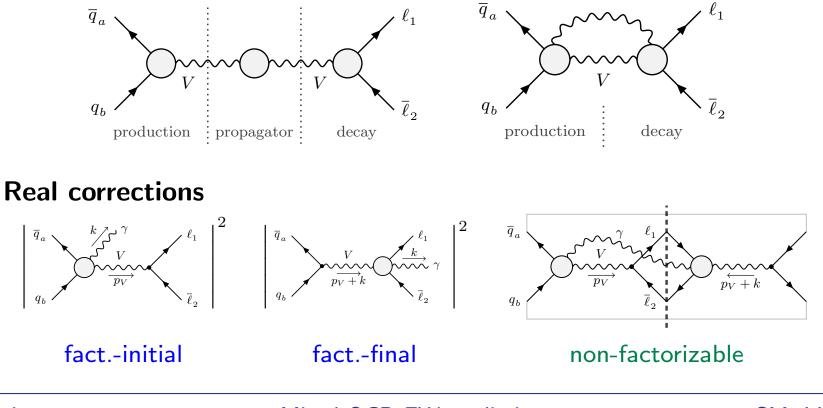
 $\frac{d\sigma_{Vj}}{dp_T^V dy} = \frac{d\sigma_{Vj}^{\rm MC}}{dp_T^V dy} \left[\frac{d\sigma_{Vj}^{\rm th}/dp_T^V}{d\sigma_{Vj}^{\rm MC}/dp_T^V} \right]$

- nNLO_{EW} includes NLL Sudakov logs $\alpha^2 \ln^{4,3} (Q^2/M_V^2)$
- Additive and multiplicative combination of EW and QCD corrections
- Estimate of $\mathcal{O}(\alpha \alpha_s)$ uncertainty

 $\Delta K_{\alpha\alpha_s}^{\rm NNLO} = \xi (K_{\rm EW\otimes QCD} - K_{\rm EW\oplus QCD})$

 $\xi = 0.1(Z)$, 0.2(W), $0.4(\gamma)$ estimated from NLO EW corrections to V+2j. (Lindert et al. 17)

 $pp \rightarrow V + jets @ 13 TeV$

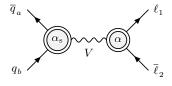

Pole scheme:

(Stuart 91; Aeppli/v.Oldenbourgh/Wyler 93)

Expand for $p_V^2 \sim \mu_V^2$ with complex pole $\mu_V^2 = M_V^2 - iM_V\Gamma_V$

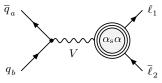
- Factorizable corrections to on-shell prod. and decay
- Non-fact. soft-photon corrections

Mixed QCD-EW predictions


Pole app. for EW \otimes QCD corrections

EW/QCD corrections in pole approximation (Dittmaier/Huss/CS 14/15) (+ corresponding real-virtual and double real)

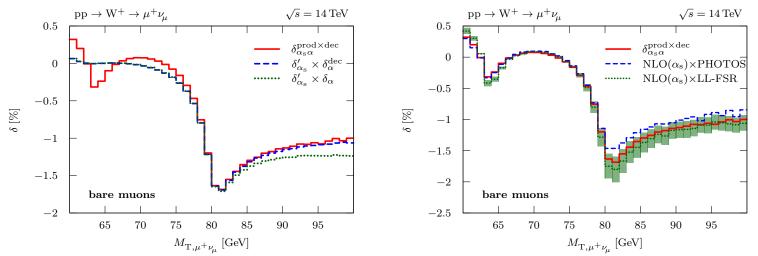
- Factorizable initial
- (partial results: Kotikov/Kühn/Veretin 07; Bonciani 11)



(expected to be dominant)

• Factorizable final×final

(finite counterterm from Djouadi/Gambino 93; negligible effect)



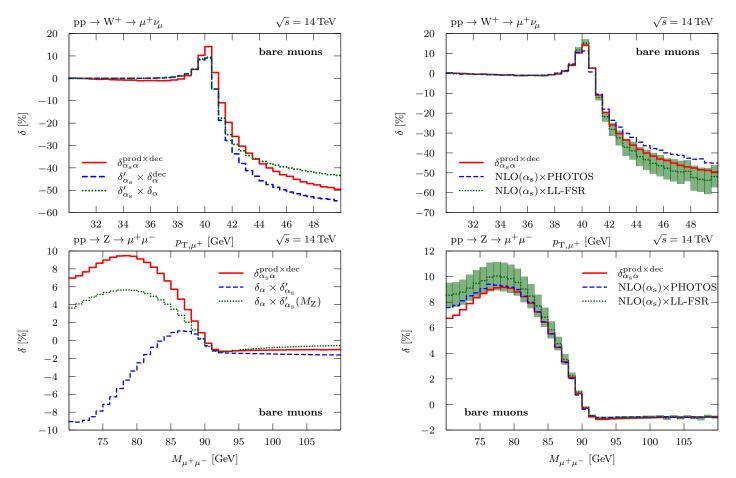
• Non-factorizable corrections

(numerically negligible)

SM@LHC 2018

Comparison of different approximations:

- $\delta_{\alpha_s \alpha}^{\text{prod} \times \text{dec}}$: factorizable initial-final $\mathcal{O}(\alpha_s \alpha)$ corrections
- Naive product of NLO corrections

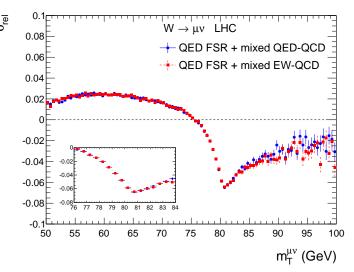

$$\delta_{\alpha_s}' \delta_{\alpha} = \left(\frac{\sigma^{\mathrm{NLO}_s} - \sigma^0}{\sigma^{\mathrm{LO}}}\right) \times \frac{\Delta \sigma^{\mathrm{NLO}_{\mathrm{ew}}}}{\sigma^0}$$

where $\sigma^{\rm LO}/\sigma^0$: LO/NLO PDFs

- NLO(α_s)⊗ LL¹FSR: NLO QCD cross section convoluted with LL-FSR structure function
- NLO(α_s) \otimes PHOTOS: NLO QCD cross section with single photon emission generated with γ -shower (Golonka/Was 06)

Pole app. for $EW \otimes QCD$ corrections

- naive product of K-factors only appropriate for observables dominated by resonance and insensitive to ISR
- reasonable agreement of LL-FSR with full result.


(comparison to YFS photon resummation in Sherpa: Huss/Schönherr in Les Houches 15)

Implementation in POWHEG BOX

(Carloni Calame et al. 16)

- Full NLO EW and QCD corrections matched to QCD and photon showers (Pythia/Photos)
- POWHEG_{two-rad}: generate first photon and gluon emissions with POWHEG (removes spurious O(α_sα) effect in Barzè et al. 12/13) (independent implementation using resonance-improved POWHEG: Mück/Oymanns 16)
- \Rightarrow includes approximation to initial-final QCD \otimes EW corrections + additional multi-gluon/photon emission
- $\mathcal{O}(\alpha_s) \otimes \text{Photos}$ in good agree- $\infty^{\mathbb{P}}$ ment with matched NLO-EW
- discrepancies to Pythia photon shower reduced by matching
- ⇒ matching to NLO-EW for reliable prediction

Summary

NLO-EW corrections entering the age of automation Prospects of EW precision physics at LHC; Sudakov corrections increasingly important at 13 TeV

Mixed EW/QCD corrections

- no full calculations available yet (but work in progress for DY, $H \rightarrow gg$)
- Approaches in Sudakov regime:
 - factorized approaches expected to be appropriate
 - Multi-jet merging of $\mathrm{EW}_{\mathsf{virt}}$ corrections

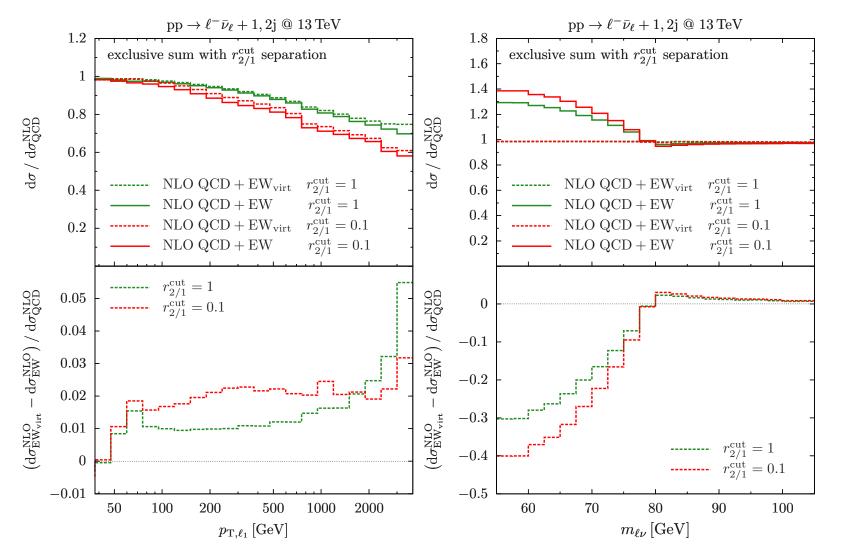
(resonance-aware merging required for full EW corrections)

- Estimate of uncertainties?
- Approaches for EW precision physics near W/Z resonances:
 - pole expansion: initial-final corrections known.
 - POWHEG matching of NLO EW and QCD shower
 - dominant effects captured by matching NLO QCD+EW to multi-photon radiation in collinear limit.

Summary

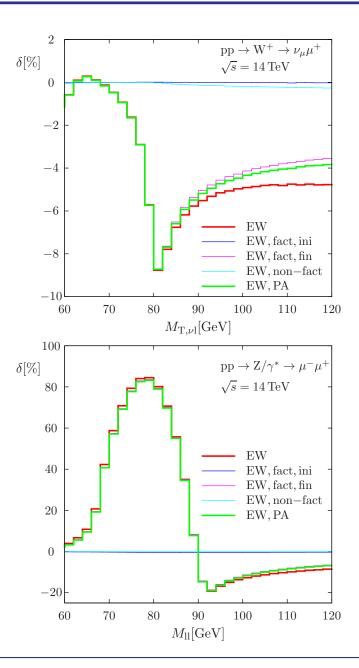
NLO-EW corrections entering the age of automation Prospects of EW precision physics at LHC; Sudakov corrections increasingly important at 13 TeV

Mixed EW/QCD corrections

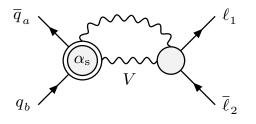


Backup slides

EW_{virt} approximation in multi-jet merging in OpenLoops+Sherpa:



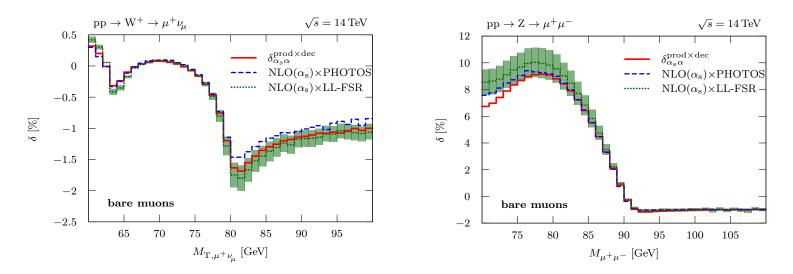
Backup slides


Application of pole approximation to EW corrections at NLO (Wackeroth/Hollik 96; Baur et al. 98; Dittmaier/Krämer 01; Dittmaier/Huss/CS 14)

- 0.1% accuracy near peak
- final-state factorizable corrections dominant
- initial-state factorizable and soft non-factorizable corrections suppressed


Non-factorizable $O(\alpha \alpha_s)$ corrections

Numerical results:

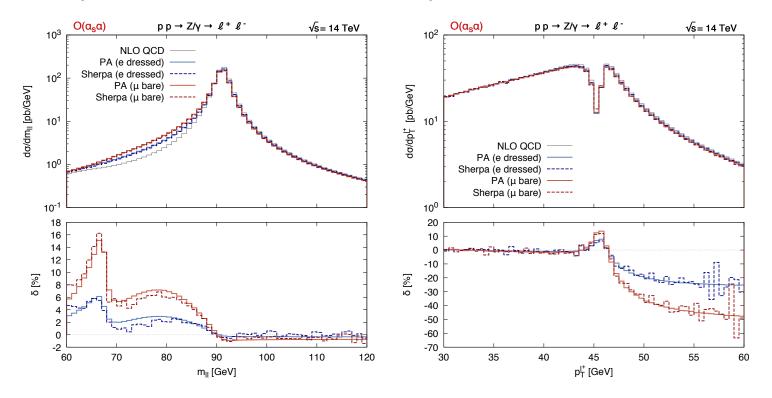

practically complete cancellation of real and virtual corrections

(defined separately through soft slicing with $\Delta E_{\gamma} \ll \Gamma_V$ in real corrections)

Comparison of $O(\alpha_s \alpha)$ corrections in pole-approximation to leading-logarithmic approximation to FSR

• LL1FSR: Convolution of NLO QCD cross section with one-loop structure function

$$\Gamma_{\ell\ell}^{\text{LL},1}(z,Q^2) = \frac{\beta_{\ell}}{4} \left(\frac{1+z^2}{1-z}\right)_+ \text{, } \beta_{\ell} = \frac{2\alpha(0)}{\pi} \left[\ln\left(\frac{Q^2}{m_{\ell}^2}\right) - 1 \right]$$


• Photos: NLO QCD with γ -shower restricted to single emission (Golonka/Was 06)

 \Rightarrow reasonable agreement of LL approximation with full result.

NLO QCD & LL-FSR

Comparison of factorizable initial-final $\mathcal{O}(\alpha_s \alpha)$ corrections to YFS photon resummation in Sherpa: (Huss/Schönherr in Les Houches 15)

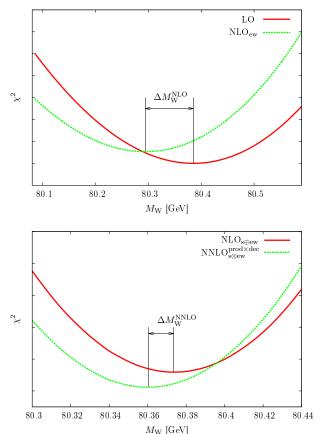
good agreement, although some different effects included:

- YFS-Sherpa includes multi-photon emission
- Pole approx. includes finite weak NLO corrections

Estimate effect of higher-order corrections on M_W measurement:

• χ^2 fit of $M_{T,\nu\ell}$ distribution in interval

 $M_{T,\nu\ell} = 64.4 - 90.5 \,\mathrm{GeV}$ with $\Delta M_{T,\nu\ell} = 1 \mathrm{GeV}$ bins


• "Templates": LO prediction for

 $M_W = \begin{cases} 80.085 \dots 80.785 \,\text{GeV}, & (\Delta M_W = 10 \,\text{MeV}) \\ 80.285 \dots 80.485 \,\text{GeV}, & (\Delta M_W = 5 \,\text{MeV}) \end{cases}$

- "Data": different theory predictions (normalized to same σ in $M_{T,\nu\ell}$ interval)
- Shift from LO \rightarrow NLO_{EW}: $|\Delta M_W^{\rm NLO}| \approx 90 {
 m MeV}$
- Shift from $NLO_{EW+QCD} \rightarrow NNLO^{prod-dec}$

 $|\Delta M_W^{
m NNLO}| \approx 14 \ {
m MeV}$

(partially included in current analysis through NLO-QCD+Photos)

