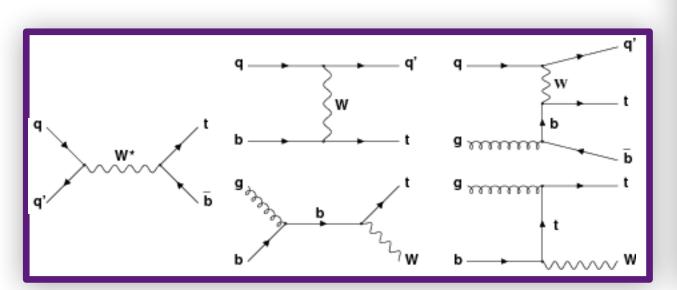
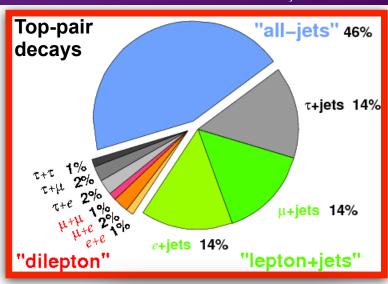
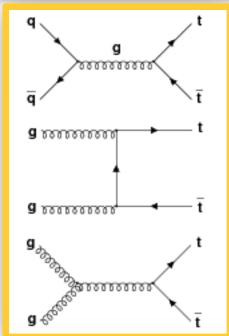


Top-quark cross-section results at the LHC

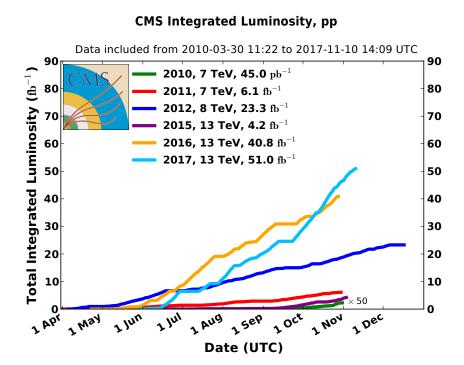


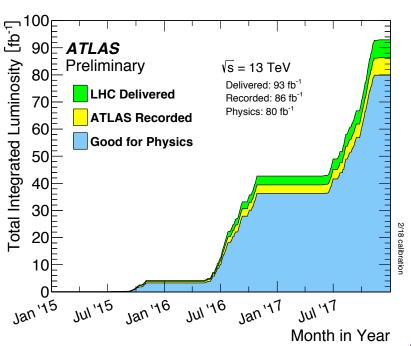

Ian Connelly

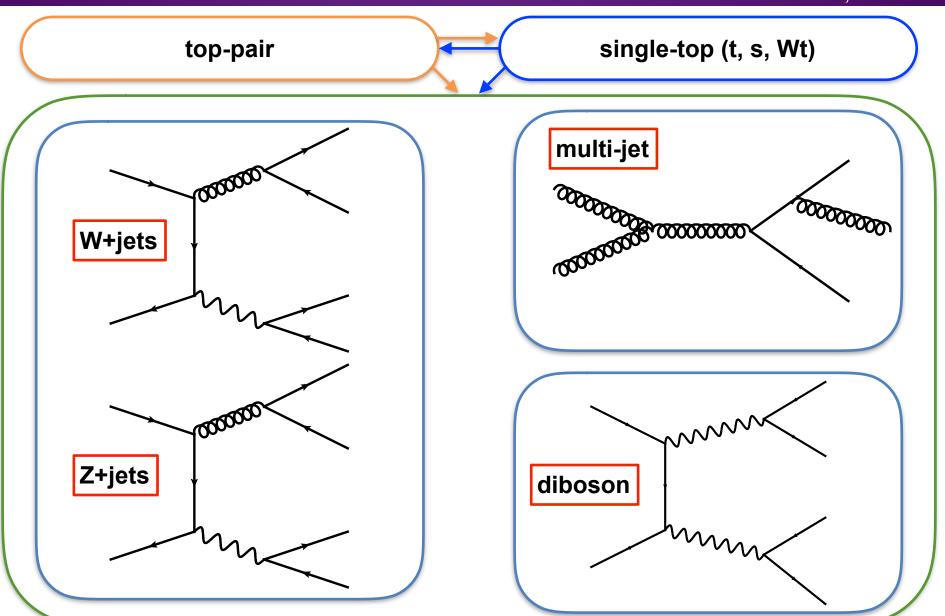

on behalf of the ATLAS and CMS Collaborations SM@LHC, Berlin, April 2018

Why study top quark production?

- The most massive fundamental particle
- Largest coupling to the Higgs boson
- Many final state signatures
 - Background to searches
- Provides a powerful test of the Standard Model
 - t→Wb :: signatures from W decays
 - Strong and electroweak production




Top quark production @ LHC


- The LHC is a top factory!
- Delivered ~80M top-pair events to each experiment at 13 TeV
- Huge dataset to analyse

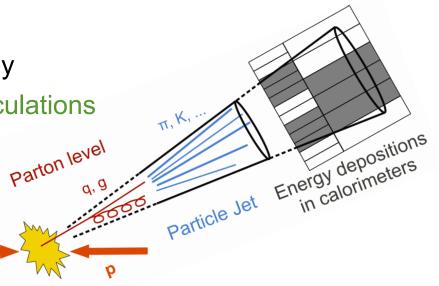
Run 2 Data Cumulative Cumulative Taking Year Top-Pair Events Single-Top Event				
2015	3.5M	1.2M		
2016	34M	13M		
2017	, 80M ,	29M		

Background Processes

Cross-section measurements

Detector level

Select events corresponding to final state signature using reconstructed objects


Particle level

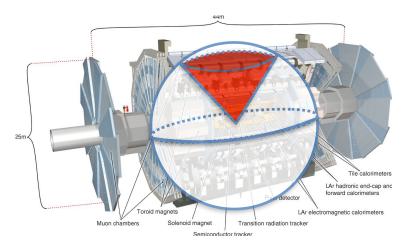
- Jets constructed from stable particles, dressed leptons, etc.
- Apply ~same selection with these objects
- Can be used to improve top modelling

Parton level

Typically quarks in MC history (t,b)
 after QCD radiation, before Wb decay

Easier to compare to fixed-order calculations

Cross-section measurements


The University of Manchester

Fiducial cross-section

- Extract number of observed events by subtracting background estimate
- Correct total number of events by selection efficiency
- Less model dependent, smaller extrapolations

Total cross-section

- Correct fiducial cross-section by the fiducial acceptance and branching fractions
- Remove channel and selection dependence
- Easy and broad interpretation

The experiments

Inclusive cross-sections

Inclusive - ott

8 TeV [20.2 fb⁻¹] lepton + jets

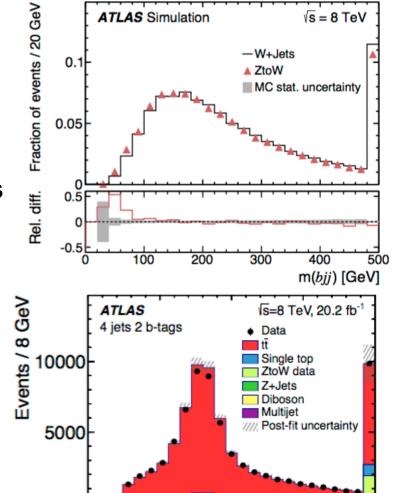
The University of Manchester

Lepton+jets measurement

Enhance fraction of leptonic W-decays

$$m_{\rm T}(W) = \sqrt{2p_{\rm T}(\ell) \cdot E_{\rm T}^{\rm miss} \left[1 - \cos\left(\Delta\phi\left(\vec{\ell}, \vec{E}_{\rm T}^{\rm miss}\right)\right)\right]} > 30 \,{\rm GeV},$$

Z+jets data events used to model W+jets


• Binned maximum- \mathscr{L} fit with three regions

- Separate signal and background (NN)
- Control W+jets background (β^{tt}, β^{W_i})
- Fit b-tagging and JES uncertainties

Dominant uncertainties

- Top modelling, JES, lepton ID/trigger, lumi
 - Range from 1-3%

$$\sigma_{fid}(tt) = 48.8 \pm 0.1 \pm 2.0 \pm 0.9 \text{ pb}$$

 $\sigma_{inc}(tt) = 248.3 \pm 0.7 \pm 13.4 \pm 4.7 \text{ pb}$

50

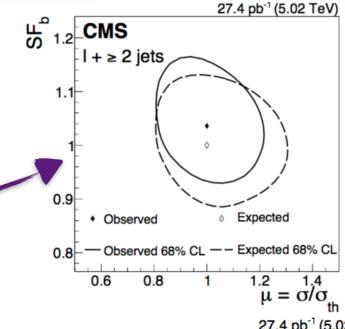
100

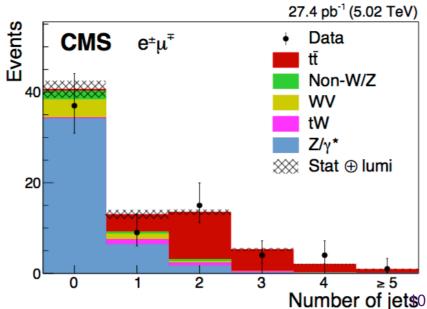
150

m(jj) [GeV]

200

5.02 TeV [27.4 pb⁻¹] ≥ 1 lepton

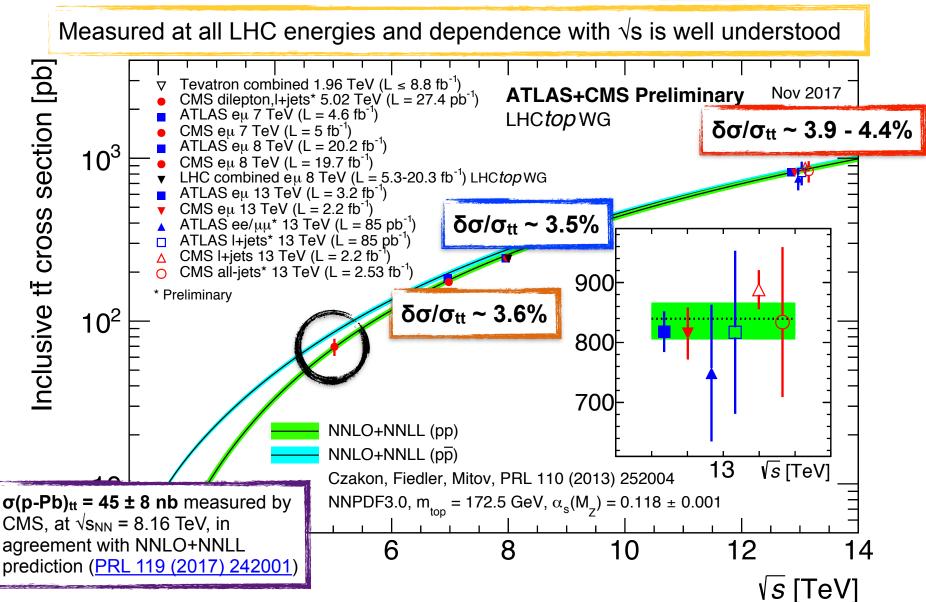




The University of Manchester

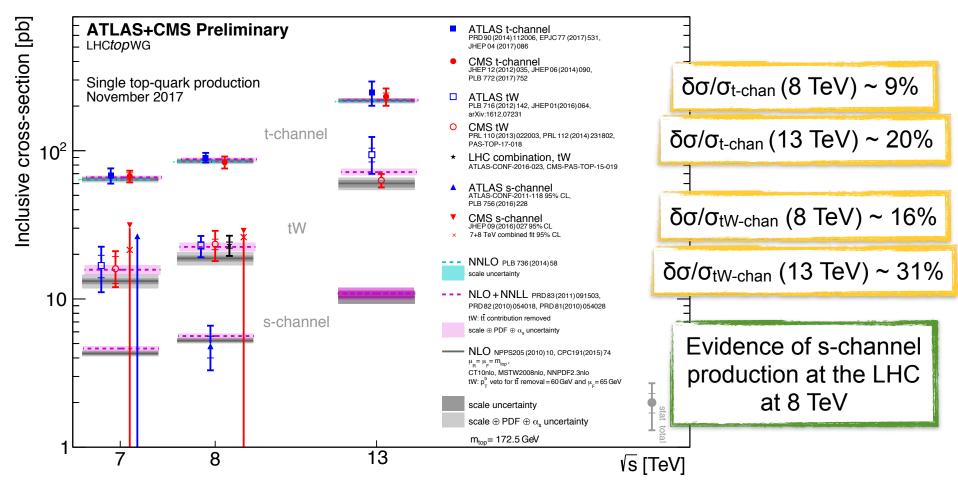
- Select events with ≥ 1 lepton and ≥ 2 b-jets
 - Separate b-jet multiplicity to control backgrounds (W/Z+jets, QCD)
 - Data-driven QCD and Z+jets normalisation
- Profiled likelihood fit in lepton+jets channel
 - Fit cross-section and b-tagging scale factor simultaneously
- Event counting in dilepton channel
 - Split into eµ and µµ channels
- Statistical and systematic uncertainties comparable
 - Cross-sections measured in fiducial region and extrapolated to inclusive phase-space
 - Combined using BLUE

 $\sigma_{inc}(tt) = 69.5 \pm 8.4 \text{ pb}$



Inclusive - $\sigma_{tt}(\sqrt{s})$

Inclusive - $\sigma_t(\sqrt{s})$

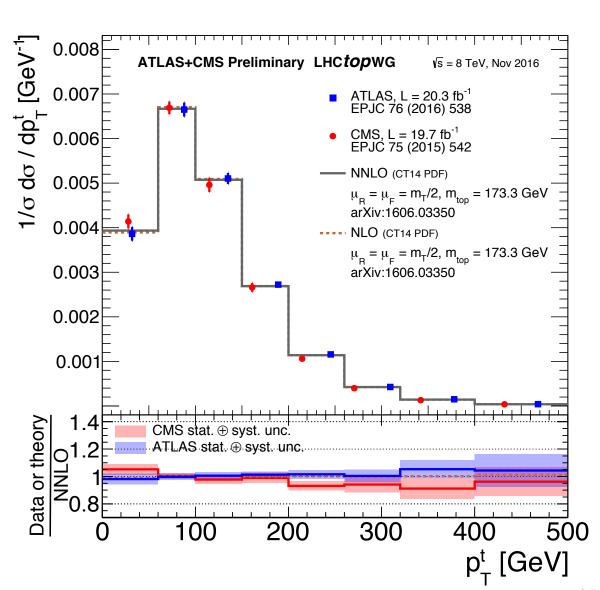


The University of Manchester

Measurements dominated by **systematic** uncertainties Good agreement with high precision theoretical predictions

Differential cross-sections

Top p_T discrepancy



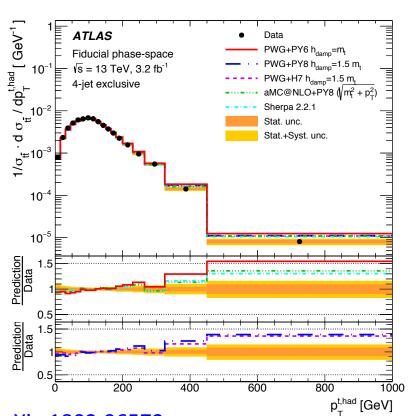
The University of Manchester

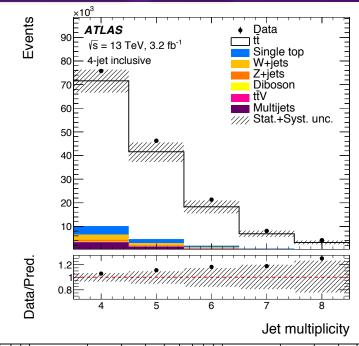
Generally accepted that current NLO generators are not modelling top kinematics particularly well

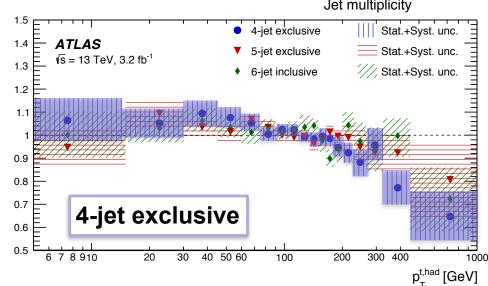
In particular, top p_T has shown to be poorly modelling between different generators

Double differential measurements can provide insight into where the dominant mismodelling may originate.

13 TeV [3.2 fb⁻¹] lepton + jets



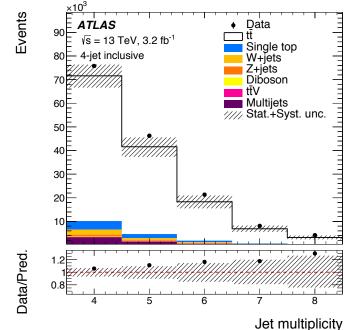

MANCHESTER 1824

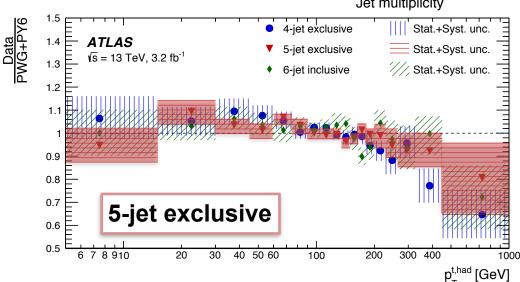

The University of Manchester

Differential in bins of jet multiplicity

- Particle level measurements
- Slope in 4-jet exclusive where modelling is dominated by NLO matrix elements

13 TeV [3.2 fb⁻¹] lepton + jets



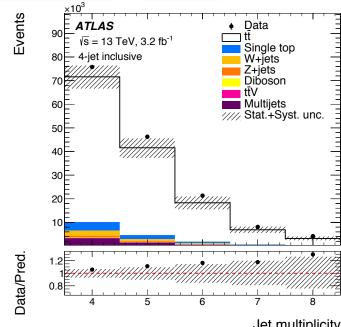


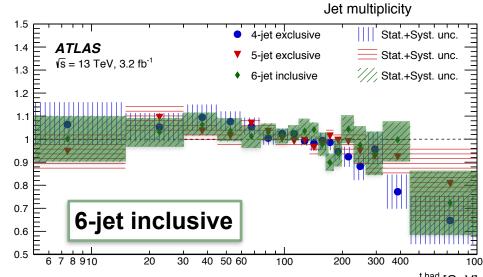
The University of Manchester

Differential in bins of jet multiplicity

- Particle level measurements
- Less pronounced slope in 5-jet exclusive, where modelling starts to have some parton shower dependence

13 TeV [3.2 fb⁻¹] lepton + jets



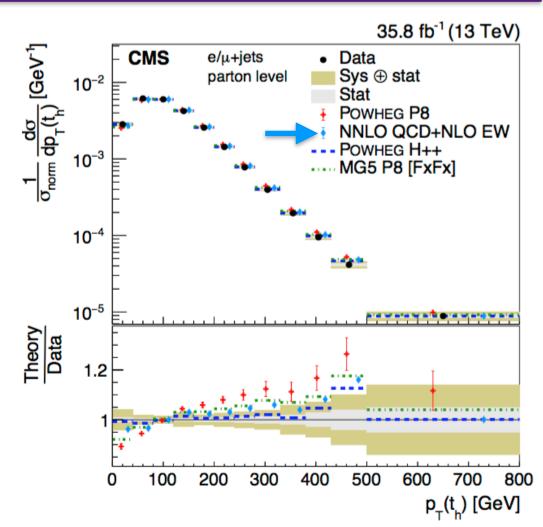

The University of Manchester

Differential in bins of jet multiplicity

- Particle level measurements
- Slope in 6-jet inclusive almost flat (except last bin), where the modelling is dominated by parton shower
- Could be result of tuning

Interesting as NLO generators should be providing NLO precision on top p_T

13 TeV [35.8 fb⁻¹] lepton + jets

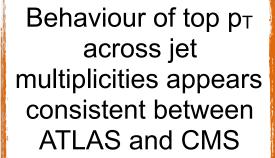

The University of Manchester

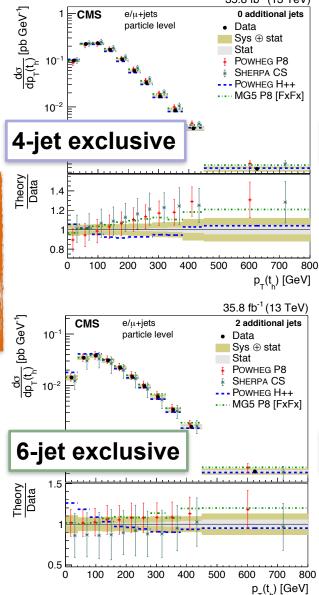
 Single and doubledifferential cross-sections

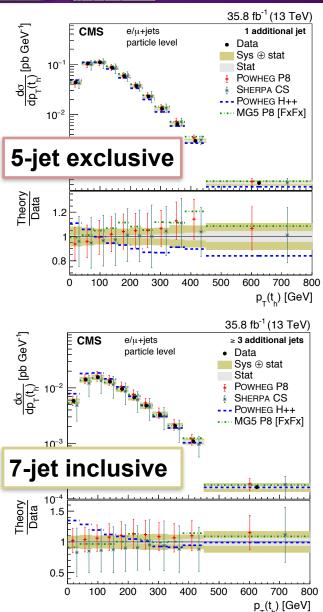
ı	Distribution	χ^2/dof p-value	χ^2/dof p-value	χ^2/dof p-value
;	$p_{\mathrm{T}}(t_{h})$	POWHEG+P8 with unc. 16.1/11 0.138	POWHEG+P8 22.9/11 0.018	NNLO QCD+NLO EW 4.99/11 0.932

- Parton and particle level measurements
- First comparison with NNLO(QCD)+NLO(EW)
- Shows a slightly harder p_T spectrum than data, but good agreement within the errors
- Double differential results

vs.	$p_T(t_h)$	y(tt)	M(tt)	N _{Jets}
y(t _h)	X			
M(tt)		Х		X
p⊤(t _h)			X	Χ
p⊤(tt)				X


13 TeV [35.8 fb⁻¹] lepton + jets


35.8 fb⁻¹ (13 TeV)

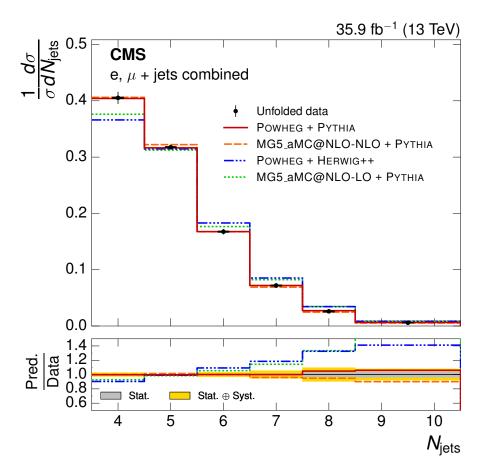


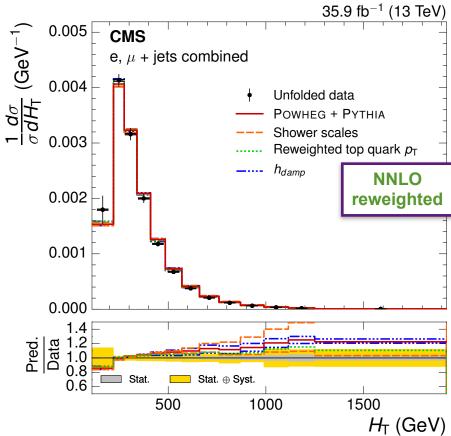
MANCHESTER 1824

The University of Manchester

NB: Ratio is inverted compared to ATLAS

13 TeV [35.9 fb⁻¹] lepton + jets

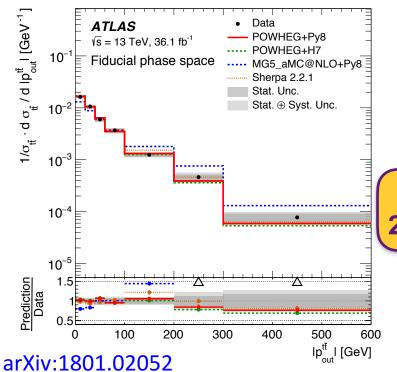


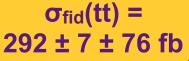


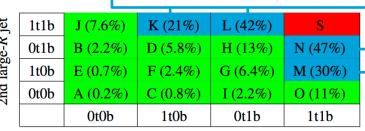
The University of Manchester

Kinematic event variables

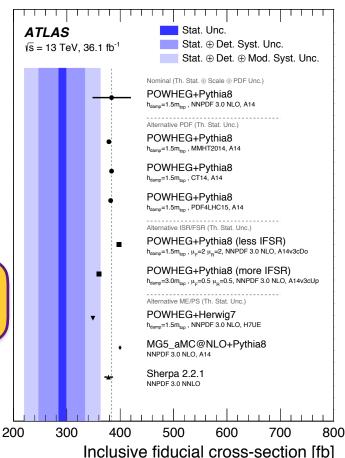
- Particle level measurements
- No top-reconstruction required


13 TeV [36.1 fb⁻¹] all-hadronic





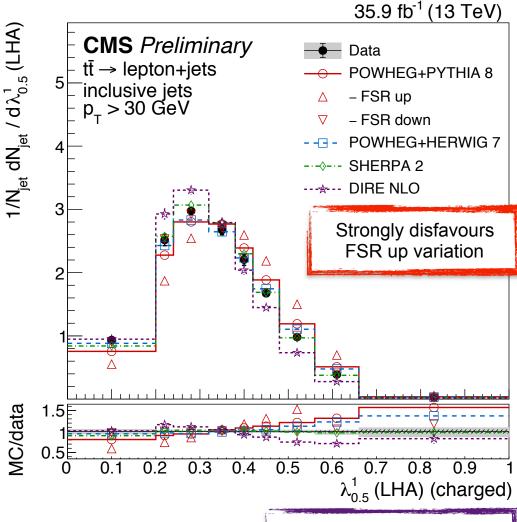
> 15% events with >= 1 top


- Boosted regime p_T(top₁; top₂) > 500; 350 GeV
 - Particle and parton level results
 - Top decay products collimated into large-R jets
 - Top-tagging @ 50% efficiency (m_j , τ_{32})
 - Data-driven background estimate

Leading large-R jet

Differential - Jet Shapes

13 TeV [36.1 fb⁻¹] lepton+jets



The University of Manchester

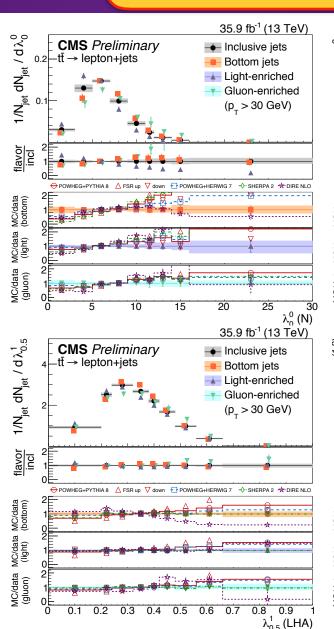
Particle level measurements

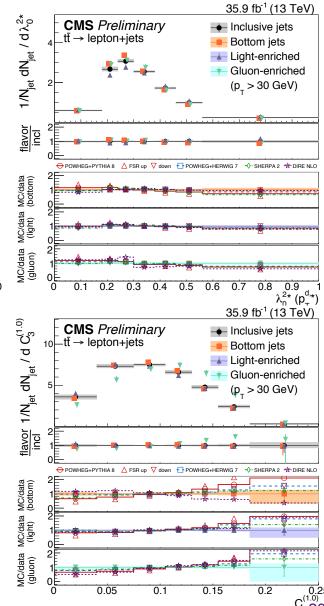
- Partial tt reconstruction
- Measurements using inclusive jets and splitting by flavour
- Range of models tested
- Jet shape variables are sensitive to generator parameters
 - Angularity
 - Eccentricity
 - N-subjettiness
 - Soft-drop observables
 - Energy correlation functions

"Les Houches angularity"

Differential - Jet Shapes

13 TeV [36.1 fb⁻¹] lepton+jets




MANCHESTER 1824

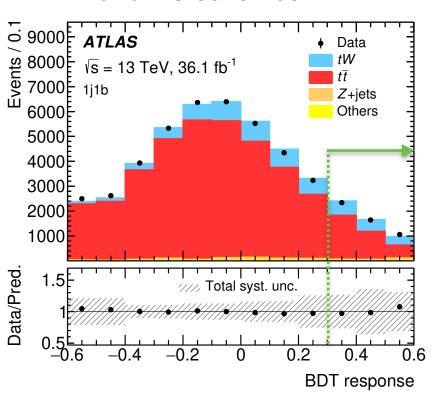
The University of Manchester

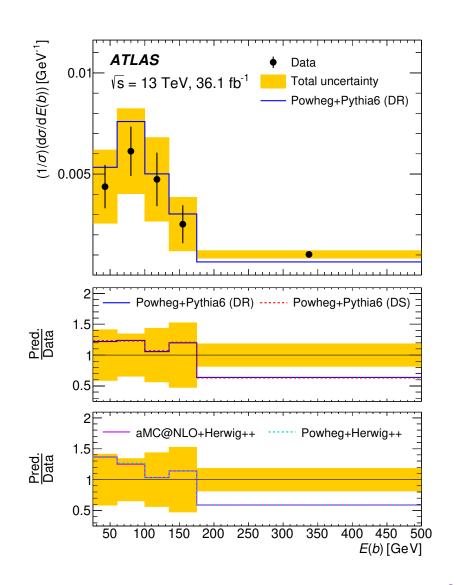
Variables shown are relevant for quark/ gluon discrimination

Different responses can be observed and guide future flavour-specific tunings

Differential - Wt-chan

13 TeV [36.1 fb⁻¹] dilepton





The University of Manchester

Particle level measurement

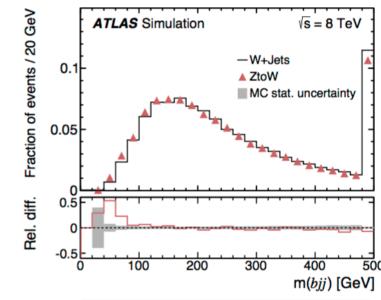
- Analysis designed to reduce sensitivity to tt-Wt interference
- BDT trained to separate tt and Wt
- No discrepancy in prediction using DR and DS schemes

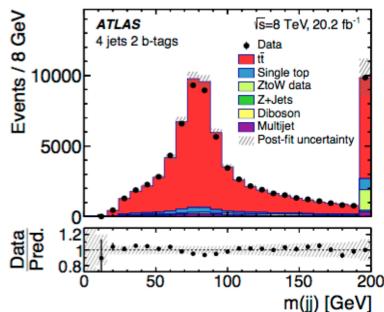
- Many results from both ATLAS and CMS in Run 2
 - Shown here just a handful of the most recent ones
- Wide range of inclusive single-top and top-pair measurements
 - Very good agreement with high precision predictions across LHC energies
- Entered the era of precision measurements of top kinematics
 - Further investigating discrepancies in top modelling
 - Double-differential measurements becoming more prolific
 - Probing phase-space relevant for searches where top-production is a key background
 - Testing higher order corrections (e.g. NNLO(QCD) + NLO(EW))
 - Start to investigate single-top differential properties

Backup

8 TeV [20.2 fb⁻¹] lepton + jets

The University of Manchester


Improved lepton+jets measurement


- Reduce jet uncertainties by targeting leptonic W-decay
- 1 lepton (e, μ) + ≥ 4 jets
- m_T(W) ≥ 30 GeV and E_T-miss ≥ 25 GeV
- W+jets shape corrected to Z+jets in data
- Non-prompt lepton normalised to E_T-miss distribution

• Binned maximum- \mathscr{L} fit with three regions

- Separate signal and background (NN)
- Control W+jets background (β^{tt}, β^{W_i})
- Fit b-tagging and JES uncertainties

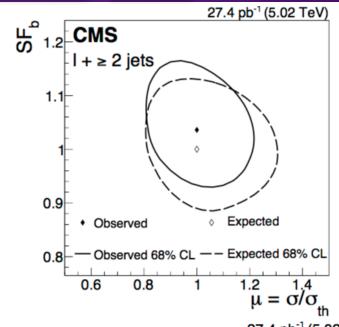
 $\sigma_{\text{fid}}(\text{tt}) = 48.8 \pm 0.1 \pm 2.0 \pm 0.9 \text{ pb}$ $\sigma_{\text{inc}}(\text{tt}) = 248.3 \pm 0.7 \pm 13.4 \pm 4.7 \text{ pb}$

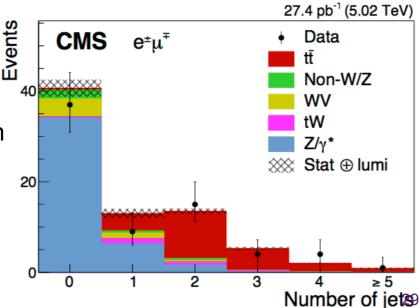
8 TeV [20.2 fb⁻¹] lepton + jets

Table 4: Breakdown of relative uncertainties in the measured inclusive and fiducial $t\bar{t}$ cross-sections. The total uncertainties contain all considered uncertainties.

Source	$\frac{\Delta\sigma_{ m inc}}{\sigma_{ m inc}}$ [%]	$rac{\Delta\sigma_{ m fid}}{\sigma_{ m fid}}$ [%]
tatistical uncertainty	0.3	0.3
Physics object modelling		
let energy scale	1.1	1.11
let energy resolution	0.1	0.1
let reconstruction efficiency	< 0.1	< 0.1
$E_{\mathrm{T}}^{\mathrm{miss}}$ scale	0.1	0.1
E ^{miss} resolution	< 0.1	< 0.1
Muon momentum scale	< 0.1	< 0.1
Muon momentum resolution	< 0.1	< 0.1
Electron energy scale	0.1	0.1
Electron energy resolution	< 0.1	< 0.1
Lepton identification	1.4	1.4
Lepton reconstruction	0.3	0.3
Lepton trigger	1.3	1.3
b-tagging efficiency	0.3	0.3
c-tagging efficiency	0.5	0.5
Mistag rate	0.3	0.3
Signal Monte Carlo modelling and parton distribution functions		
NLO matching	1.1	0.9
Scale variations	2.2	1.0
Parton shower	1.3	0.9
PDF	3.0	0.1
Background normalisation for non-fitted backgrounds		
Single top	0.3	0.3
Z+ jets	0.2	0.2
Diboson	0.1	0.1
Background modelling		
ZtoW modelling	1.1	1.1
Multijet	0.6	0.6
Luminosity	1.9	1.9
Total (syst.)	5.7	4.5

5.02 TeV [27.4 pb⁻¹] ≥ 1 lepton

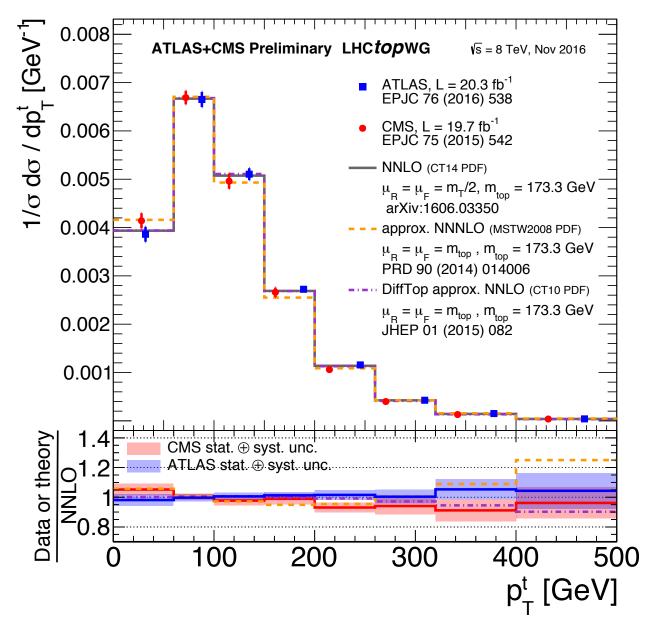




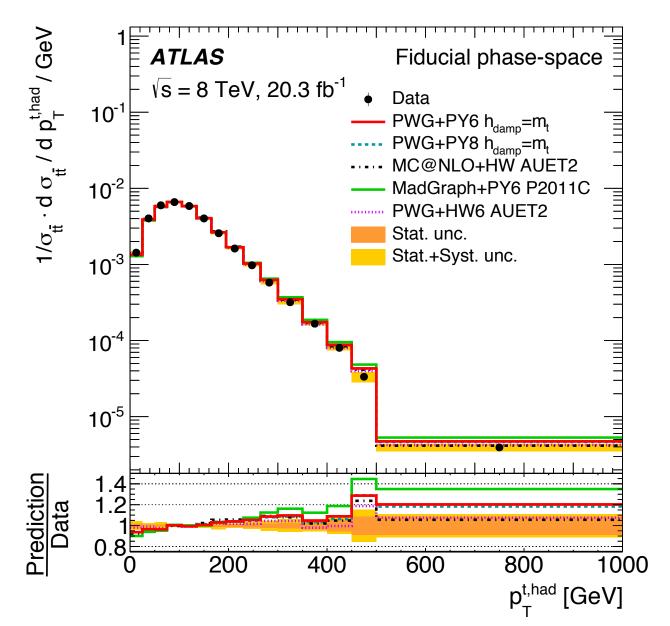
The University of Manchester

- Select events with ≥ 1 lepton and ≥ 2 b-jets
 - Separate b-jet multiplicity to control backgrounds (W/Z+jets, QCD)
 - Data-driven QCD and Z+jets normalisation
- Profiled likelihood fit in lepton+jets channel
 - Fit cross-section and b-tagging scale factor simultaneously
 - Include uncertainties as nuisance parameters
- Event counting in dilepton channel
 - Split into eµ and µµ channels
- Statistical and systematic uncertainties comparable
 - Cross-sections measured in fiducial region and extrapolated to inclusive phase-space
 - Combined using BLUE

 $\sigma_{inc}(tt) = 69.5 \pm 8.4 \text{ pb}$

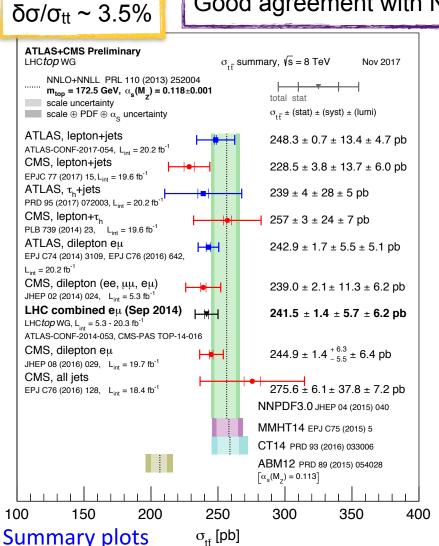


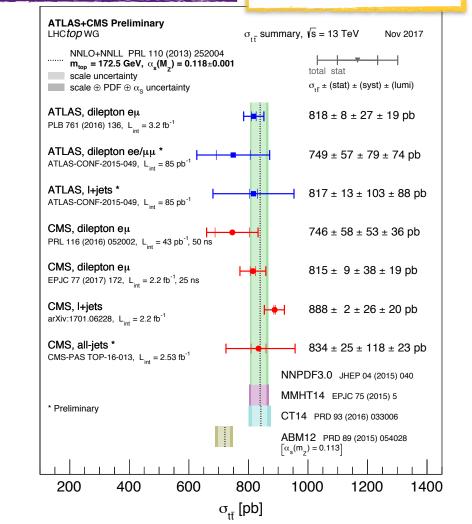
Top p_T discrepancy



Top p_T discrepancy

Inclusive - $\sigma_{tt}(\sqrt{s})$





The University of Manchester

Measurements at 8 and 13 TeV dominated by systematic uncertainties
Good agreement with NNLO+NNLL prediction

 $\delta\sigma/\sigma_{tt} \sim 3.9 - 4.4\%$

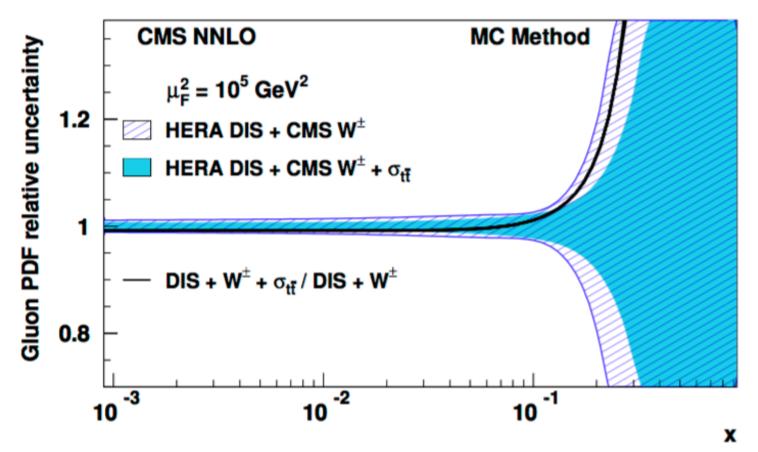
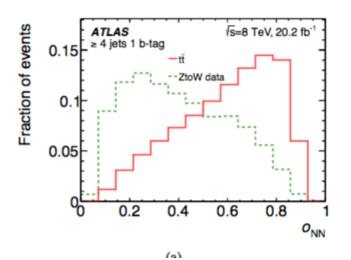
Backup

5.02 TeV [27.4 pb⁻¹] ≥ 1 lepton

The University of Manchester

Measuring the cross-section at a new centre-of-mass energy

- Provides new data at high values of Bjorken-x
- Study of the proton PDFs shows a modest improvement in gluon uncertainties for x > 10⁻¹

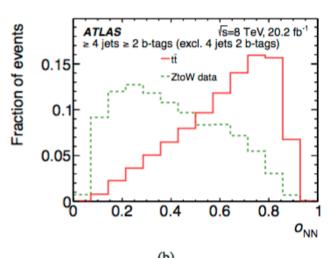
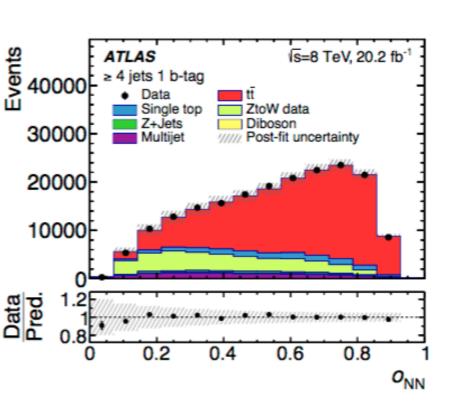
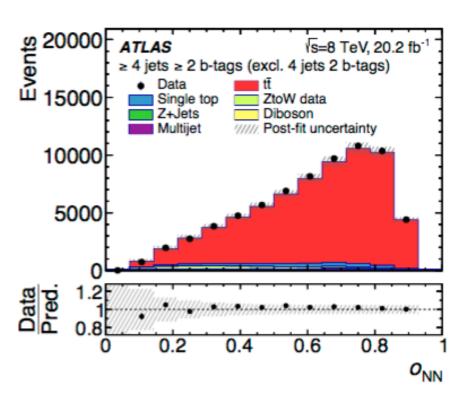


Table 2: List of the seven input variables of the NN, ordered by their discriminating power.

Variable	Definition
m_{12}	The smallest invariant mass between jet pairs.
$\cos(\theta^*)_{bjj}$	Cosine of the angle between the hadronic top-quark momentum and the beam direction
	in the $t\bar{t}$ rest frame.
$m(\ell \nu b)$	Mass of the reconstructed semileptonically decaying top quark.
\boldsymbol{A}	Aplanarity, as defined in Eq. (2)
m(bjj)	Mass of the reconstructed hadronically decaying top quark.
$m_{\ell 1}$	The smallest invariant mass between the charged lepton and a jet.
m_{23}	The second smallest invariant mass between jet pairs.

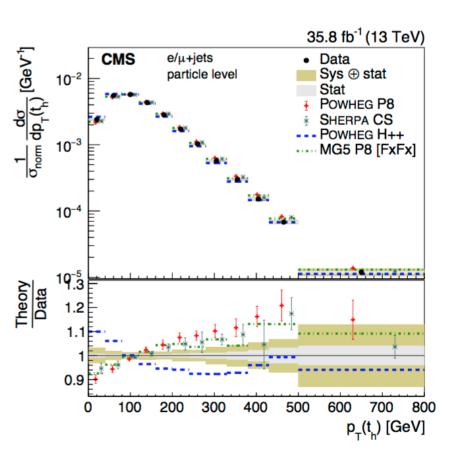




The University of Manchester

Neural network output

13 TeV [35.8 fb⁻¹] lepton + jets



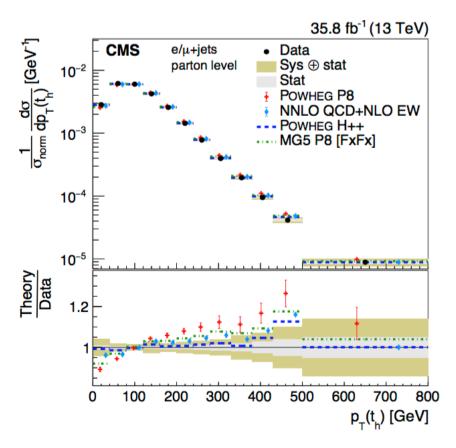
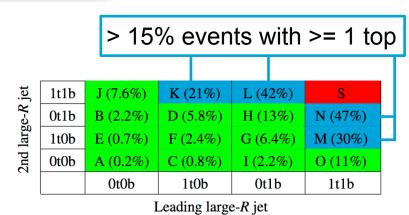

MANCHESTER 1824

Table 2: Comparison between the measured normalized differential cross sections at the parton level and the predictions of POWHEG combined with PYTHIA8 (P8) or HERWIG++ (H++), the multiparton simulation MG5_aMC@NLO FxFx, and the NNLO QCD+NLO EW calculations. The compatibility with the POWHEG+PYTHIA8 prediction is also calculated including its theoretical uncertainties (with unc.), while those are not taken into account for the other comparisons. The results of the χ^2 tests are listed, together with the numbers of degrees of freedom (dof) and the corresponding p-values.

Distribution	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value	χ^2/dof	<i>p</i> -value
	POWHEG+P8 with unc.		POWHEG+P8		NNLO QCD+NLO EW	
$p_{\mathrm{T}}(t_{\mathrm{high}})$	18.4/11	0.073	24.4/11	0.011		
$p_{ m T}({ m t_{low}})$	16.6/11	0.120	40.0/11	< 0.01		
$p_{\mathrm{T}}(t_h)$	16.1/11	0.138	22.9/11	0.018	4.99/11	0.932
$ y(t_h) $	1.25/10	1.000	1.33/10	0.999	2.23/10	0.994
$p_{ m T}({\sf t}_\ell)$	23.6/11	0.014	33.0/11	< 0.01	8.67/11	0.652
$ y(t_\ell) $	2.03/10	0.996	2.29/10	0.994	8.18/10	0.611
$M(t\bar{t})$	7.78/9	0.556	11.3/9	0.259	24.4/9	< 0.01
$p_{ m T}({ m tar t})$	5.52/7	0.597	40.9/7	< 0.01		
$ y(t\bar{t}) $	3.89/9	0.919	5.36/9	0.802	9.29/9	0.411
$ y(t_h) $ vs. $p_T(t_h)$	22.7/43	0.995	38.8/43	0.654		
$M(t\bar{t})$ vs. $ y(t\bar{t}) $	20.2/34	0.970	33.2/34	0.507		
$p_{\rm T}({\rm t_h})$ vs. $M({\rm t\bar{t}})$	34.4/31	0.309	57.4/31	< 0.01		
	POW	HEG+H++	мG5_амо	C@NLO+P8 FxFx		_
$p_{\mathrm{T}}(t_{\mathrm{high}})$	4.10/11	0.967	13.2/11	0.283		
$p_{\mathrm{T}}(t_{\mathrm{low}})$	17.4/11	0.096	11.9/11	0.370		
$p_{\mathrm{T}}(t_{h})$	3.61/11	0.980	9.95/11	0.535		
$ y(t_h) $	1.63/10	0.998	1.11/10	1.000		
$p_{\mathrm{T}}(t_{\ell})$	8.36/11	0.680	16.4/11	0.128		
$ y(t_\ell) $	1.57/10	0.999	2.48/10	0.991		
$M(t\bar{t})$	3.57/9	0.937	7.61/9	0.574		
$p_{\mathrm{T}}(\mathrm{t}\bar{\mathrm{t}})$	43.4/7	< 0.01	20.5/7	< 0.01		
$ y(t\bar{t}) $	5.94/9	0.746	4.65/9	0.864		
$ y(t_h) $ vs. $p_T(t_h)$	32.6/43	0.877	27.8/43	0.965		
$M(t\bar{t})$ vs. $ y(t\bar{t}) $	27.2/34	0.788	40.2/34	0.214		
$p_{\rm T}({\rm t_h}) \ vs. \ M({\rm t\bar{t}})$	67.9/31	< 0.01	77.9/31	< 0.01		

Powheg Herwig++ and NNLO+NLO


13 TeV [36.1 fb⁻¹] all-hadronic

The University of Manchester

- Boosted regime p_T(top₁; top₂) > 500; 350 GeV
 - Top decay products collimated into large-R jets
 - Top-tagging requirement @ 50% efficiency (m_{ii}, τ₃₂)

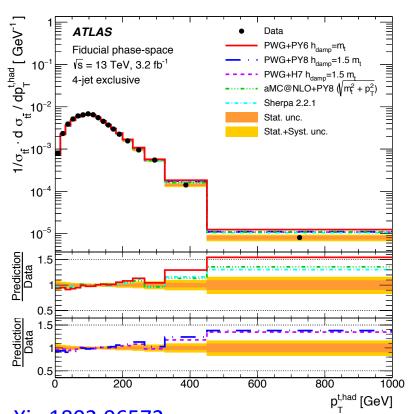
This "ABCD" estimate assumes that the mistagging rate of the leading jet does not depend on how the second-leading jet is tagged. This assumption is avoided by measuring the correlations in background-dominated regions, e.g. comparing the ratio of the numbers of events in regions F and E (giving the leading jet top-tagging rate when the second-leading jet is top-tagged) with the ratios of events in regions C and A (giving the leading jet top-tagging rate when the second leading jet is not top-tagged). This results in a refined data-driven estimate of the size of the multijet background given by

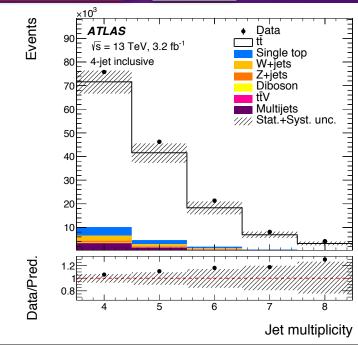
$$S = \frac{J \times O}{A} \cdot \frac{D \times A}{B \times C} \cdot \frac{G \times A}{E \times I} \cdot \frac{F \times A}{E \times C} \cdot \frac{H \times A}{B \times I},$$

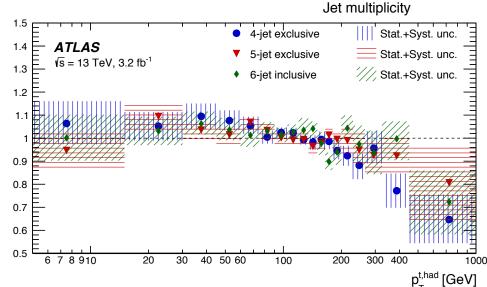
$$= \frac{J \times O \times H \times F \times D \times G \times A^{3}}{(B \times E \times C \times I)^{2}},$$
(1)

arXiv:1801.02052

13 TeV [3.2 fb⁻¹] lepton + jets






The University of Manchester

Differential in bins of jet multiplicity

- Particle level measurements
- Slope visible in p_T(t,had) for all jet multiplicities
- Large uncertainty for ≥ 6 jets

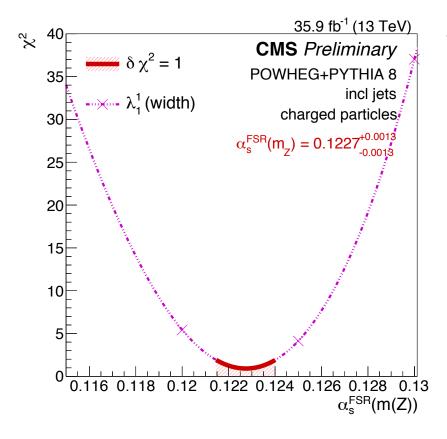
13 TeV [36.1 fb⁻¹] lepton+jets

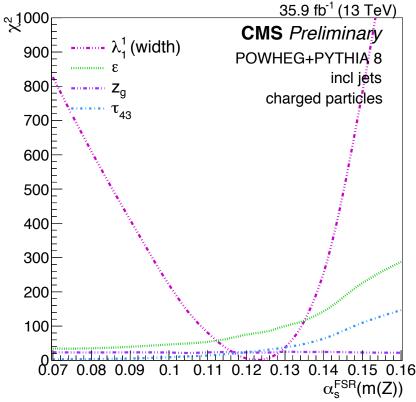
The University of Manchester

Radiation uncertainty samples used to determine uncertainty are separate to the radHi/Lo samples overlaid on the unfolded measurements. The radHi/Lo samples vary the shower alpha_s value according to the scale variation, but do not touch hdamp.

The uncertainties on the modeling of the tt signal are estimated by using migration matrices derived from samples with the following variations. The renormalization and factorization scales in the matrix-element calculation are varied by factors of 0.5 and 2.0 using weights. The scales for initial- and final-state radiation in the parton shower are varied independently by factors of 0.5 and 2.0 with respect to their default values. The "hdamp" parameter regulating the real emissions in POWHEG is varied from its central value of $1.58 \times m_t$ using samples with hdamp set to $0.99 \times m_t$ and $2.24 \times m_t$. Additional samples are generated with the underlying event tune varied within its uncertainties. For estimating the uncertainty due to color reconnection, the default MPI-based, QCD-inspired [75], and gluon-move [76] models are compared with and without early resonance decays. An additional sample is generated using POWHEG +HERWIG++ for testing an alternative model of parton shower, hadronization, underlying event, and color reconnection. The b fragmentation function is varied to cover e⁺e⁻ data at the Z pole [4, 9, 77, 78] with the Bowler-Lund [41] and the Peterson [79] parametrizations. Semileptonic branching ratios of B hadrons are varied within their measured values [80]. The top quark mass is measured by CMS with an uncertainty of ± 0.49 GeV [81], but samples in this analysis are generated with ± 1 GeV in order to conservatively estimate its impact on the jet substructure measurements. The transverse momentum distribution of the top quark was not found to be in agreement with NLO predictions by recent CMS measurements at $\sqrt{s} = 13$ TeV [82, 83]. The full data-MC difference in the top quark p_T distribution is taken as an uncertainty. The effects of the most important systematic uncertainties are shown in Appendix A.

13 TeV [36.1 fb⁻¹] lepton+jets



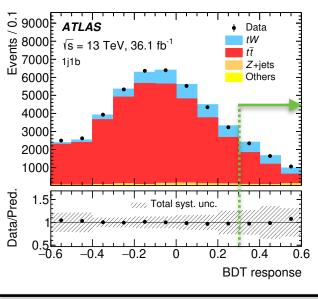


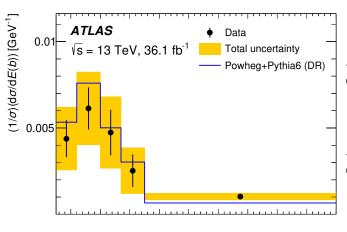
The University of Manchester

Generally, data shows a preference for a lower alpha_s than generators provide by default.

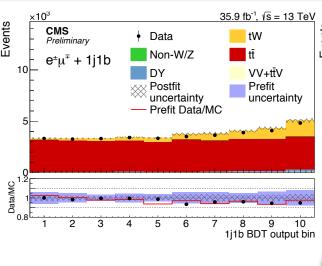
Pythia8 specific scan of alpha_s was made using X2 fit.

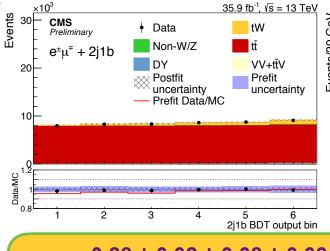
Wt (dilepton)

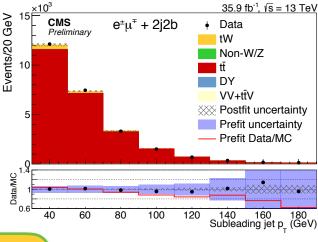

13 TeV [36.1 fb⁻¹]


13 TeV [35.9 fb⁻¹]




MANCHESTER 1824


The University of Manchester



 μ = 0.88 ± 0.02 ± 0.08 ± 0.03 $\sigma_{inc}(tW)$ = 63.1 ± 1.8 ± 6.0 ± 2.1 pb