

Top quark properties @ LHC

GK Krintiras on behalf of **ATLAS** and **CMS** Collaborations

UCL

Université

catholique de Louvain

CMS

Up-to-date compilation: 4 🗸 snn & 2 systems @ LHC !

A non-exhaustive list of top quark-antiquark properties

Property	Result (most precise or most recent)	Uncertainty	Journal Link (or Preprint)/ Conf. note
Charge	0.64 e	0.02 (stat) ± 0.08 (syst) e	JHEP 11 (2013) 031
Mass (kinematic extraction)	172.44 GeV	0.13 (stat) ± 0.47 (syst) GeV	PRD 93 (2016) 072004
Mass difference	-0.15 GeV	0.19 (stat) ± 0.09 (syst) GeV	PLB 770 (2017) 50
Width (direct method)	1.76 GeV	0.33 (stat) _{-0.68} (syst) GeV	EPJ C 78 (2018) 129
Width (indirect method)	1.36 GeV	0.02 (stat) ^{+0.14} (syst) GeV	PLB 736 (2014) 33
Spin (polarization)	Not uniquely defined variables		JHEP 03 (2017) 113 PRD 93 (2016) 052007
Spin (correlation fraction)	1.20	0.05 (stat) ± 0.13 (syst)	PRL 114 (2015) 142001
Rapidity cut-independent charge asymmetry	0.0055	0.0023 (stat) ± 0.0025 (syst)	arXiv:1709.05327
Colour flow Underlying event	No "one-fits-all" prediction		ATLAS-CONF-2017-069 CMS-PAS-TOP-17-015
Gauge and Yukawa couplings	Wilson ĉ compatible with 0 µt strength: 1.18	+0.31-0.27 (tot)	arXiv:1709.05327 CMS-PAS-HIG-17-031
W boson helicity fractions	Fo = 0.709 FL = 0.299 FR = -0.008	0.012 (stat) +0.015-0.014 (syst) 0.008 (stat) +0.013-0.012 (syst) 0.006 (stat) ± 0.012 (syst)	EPJ C 77 (2017) 264

We know some properties well, but several key properties **remain** poorly understood

3

modeling uncertainties typically dominant or important source

"Decay"

7

The most recent measurements at $\sqrt{s} = 8$ and 13 TeV

Events / GeV **3D template** fit method using: m_{top}^{reco} , m_{W}^{reco} , R_{ba}^{reco} 1000 Kinematic fit for jet-parton assignment 800 rejects combinatorial background 600 $\square m_{top}$, JES factor (JSF) & b-to-light-jet JSF (bJSF) 400 simultaneously determined 200 BDT optimisation reduced syst. unc. 130 dominant syst. JES (exp.) and *tt* modeling (theo.) 172.08 ± 0.39 (stat) ± 0.82 (syst) GeV <m^{hyb}> [GeV] **Z** Ideogram method: $(m_{top}^{reco}, m_W^{reco})$ 2D fit In situ JSF extraction & kinematic fit for jet-parton assignment Measurement as a function of several kinematic vars. compared to different CR refined models searching for biases

dominant syst. JEC (exp.) and tt modeling (theo.)

172.25 ± 0.08(stat+JSF) ± 0.62(syst) GeV

Mass

Where do we currently stand then ?

ATLAS-CONF-2017-071, CMS: PRD 93 (2016) 072004 **ATLAS** Preliminary Combinations m_{top} ± stat. ± syst. CDF (Mar 2014) $173.16 \pm 0.57 \pm 0.74$ D0 (Jul 2016) **H** 174.95 + 0.40 + 0.64 CMS (Apr 2016) $172.44 \pm 0.13 \pm 0.47$ ATLAS (Sep 2017) $172.51 \pm 0.27 \pm 0.42$ ----- ATLAS Combination stat. uncertainty stat. uncertaintv total uncertainty total uncertainty 170 175 180 165 m_{top} [GeV]

Mass_

see talk from André

Kinematic extractions make use of MC
 measuring a MC top mass parameter
 translating to a well defined scheme "costs" in accuracy
 Calibration of MC top mass possible
 at the same time with e.g. x.section but less precise
 devise analytically calculable observables e.g. soft drop grooming
 Difference to Tevatron legacy not (yet?) understood

Derived from tt(+jet) x.section (system)

Top-quark pole mass measurements

March 2018

The most recent direct measurements at 8 and 13 TeV

Template method using m_{bl}, Δ R_{min}(b,q) from bW(lv), bW(qq)
 Γ_t sensitive observables
 MC reweighting for different Γ_t values
 QCD multijet separately estimated from data in e,µ+jets
 based on low-E_T (lepton isolation) in e (µ) + jets
 Dominated by tt modeling (theo.) and JES&JER (exp.)

^{+0.79} 1.76 ± 0.33 (stat)^{_0.68}(syst) GeV

Similar template method using m_{bl} from bW(lv), bW(lv)
 MC samples for different Γ_t values
 NLO (LO) precision in production (decay)
 DY estimated from data in eµ, ee, µµ
 based on Z pole mass control region
 Dominated by tt and tW modeling (theo.)

 $0.6 < \Gamma_t < 2.5 \text{ GeV} @ 95\% \text{ CL}$

Combined inclusive and differential charge asymmetry

- Inputs extracted from $\Delta |\mathbf{y}|$ at parton level
 - ATLAS: Fully Bayesian Unfolding
 - Image: CMS: regularised matrix inversion (7 TeV), and template fits to ytt=tanh∆|y| (8 TeV)
- Combination with Best Linear Unbiased Estimate
 - assumptions must be made on correlations
 - 7 TeV: a 'coarse' model (less available info.)
 - e.g. all detector uncertainties as single unc -0.02
 - 8 TeV: detailed systematic unc. mapping
 - both inclusively and differentially

Combined inclusive and differential charge asymmetry

Reduce phase space for many models (W', heavy Axigluon, scalar isodoublet, colour triplet scalar,colour sextet scalar)

Charge asymmetry depends on phase space

- \blacksquare high mass/pT enhance quark annihilation
- Asymmetry measured against inv. mass of tt system
- Good agreement found between data and SM expectations within uncertainties

Spin information via angular distributions of *tt* decays

The Wtb vertex in top decays

 \square maximize likelihood using the $\cos\theta^*$ expected from the 3 helicities hadronic "branch" less precise ATLAS: no improvement in tot. unc. CMS: considered as a x.check Arbitrary Units 0.18 ATLAS Simulation u+ ≥ 4-jets, ≥ 2 tags **Right handed** 0.16 s=8 TeV Leptonic Analyser Left handed 0.14 Longitudinal 0.12 0.1 0.08 0.06

W_helicity

Б

0.04

0.02

0^E_1

-0.8

(d)

ATLAS+CMS	Preliminary	November 2	2017		 	
Theo PRD 8	ory (NNLO QCD) 1 (2010) 111503 (R)		F _F	, F		Fo
- ●-■ ▲ Data	(F _R /F _L /F ₀)					
ATLAS 2010 sir	ngle lepton, / s=7 TeV	, L _{int} =35 pb ⁻¹	H <mark>−●</mark> H		⊢ ▲	
ATLAS 2011 sir JHEP 1206 (2012) 088	ngle lepton and dilepto	on, √ s=7 TeV, L _{int} =	=1.04 fb ⁻¹	H	┠┼▲	H
CMS 2011 singl	le lepton, √s=7 TeV, L	=2.2 fb ⁻¹ *		F	H∎H-I H- ▲- H	
LHC combinati LHC <i>top</i> WG ATLAS-CONF-2013-03	ion, /s=7 TeV		F●-I		₩I ┠┼ <u></u> ▲┼┦	
ATLAS 2012 sir	ngle lepton, / s=8 TeV	, L _{int} =20.2 fb ⁻¹	M	•		M
CMS 2011 singl JHEP 10 (2013) 167	le lepton, √ s=7 TeV, L	_{int} =5.0 fb ⁻¹	H	Hell	H	H
CMS 2012 singl	le top, √ s=8 TeV, L _{int} =	19.7 fb ⁻¹	le l	H■H	н	* +
CMS 2012 singl	le lepton, √ s=8 TeV, L	_{int} =19.8 fb ⁻¹	H	H.	Þ	H.
CMS 2012 dilep CMS-PAS-TOP-14-017	oton, √ s=8 TeV, L _{int} =19	9.7 fb ⁻¹	HHH	H	Hatt	
		* superseded by publi	ished result			I
			0	Wb	0.5 ooson helicity f	racti
dinal	left-hand	led	right-han	ded		

b

 $F_0 + F_R + F_L = 1$

10

Colour connections between partons and jets

Colour flow

- It affects the energy distribution within etween jets, quantified through a radial jet-constituent moment ("jet pull") -& between jets, quantified through
 - 7
 - angle between jet pull and $\vec{J}_1 \vec{J}_2$ direction 7
- Data disclose 7
 - a weaker than predicted colour-flow effect
 - Iarger than predicted values for jet pull
- Not well modeled by most ME+PS combinations

Can we improve the modeling of tops?

- Crucial to understand soft QCD reminiscent effects in heavy quark hadroproduction
 - accurate description of the fragmentation and hadronization of the quarks
 - test universality assumption of the underlying event (UE) at scales up to 2×mtop

Can we improve the modeling of tops?

- Crucial to understand soft QCD reminiscent effects in heavy quark hadroproduction
 - accurate description of the fragmentation and hadronization of the quarks
 - test universality assumption of the underlying event (UE) at scales up to 2×mtop
- A rich set of variables to probe the *tt* recoil, the contribution from MPI and CR
 - multiplicity, momentum flux, and the topology or shape of the event
 - ☑ fair agreement with PW/MG5aMC@NLO[FxFx]+P8 (CUETP8M2T4)
 - default settings for HW++, HW7, and Sherpa disfavored

Can we improve the modeling of tops?

Data indicate lower effective strong coupling for FSR than the default in PYTHIA8

similar trend is seen for jet substructure observables in *tt* events \rightarrow see talk from Ece¹⁴

Results can be used to improve assessment of systematics in future top measurements

Accessing the top couplings with EW bosons & Higgs

arXiv:

68% CL 95% CL Best fit

 $\bar{c}_{\mu\nu}/\Lambda^2$

ttV theory [1] 2D best fit

35.9 fb⁻¹ (13 TeV)

CMS

- Direct access to the couplings of the top quark
 - important background (*tt*V,γ,bb) for *tt*H measurements
- These final states can be affected by BSM Physics
 - interpretation in terms of e.g. EFT approach $\mathcal{L}_{eff} = \mathcal{L}_{SM} + \frac{1}{\Lambda} \sum_{i} c_i \mathcal{O}_i + \frac{1}{\Lambda^2} \sum_{j} c_j \mathcal{O}_j + \cdots$ 1.0

Establishing top quark Yukawa coupling

- ttH production crucial for probing tree level coupling of Higgs boson to top quarks 7
 - rare (~1% of ggH), but distinct final state with multiple jets, b jets, leptons, and 7 photons
- Both ATLAS and CMS reported evidence for ttH production using Run 2 (2016) data
 - increased sensitivity combining already published measurements with Run 1 data 7
- Correlations between Run-1 and Run-2 analyses not exactly known N
 - signal theory and some background theory uncertainties correlated 7
 - experimental uncertainties largely uncorrelated 7

detailed investigation of correlation scheme between the two sets of analyses to

ensure least possible bias	Analysis	-	Categories	Result (µ _{ttH})
ſ	H→ZZ→4I	JHEP 11 (2017) 047	7 3	0.00 ^{+1.19} -0.00
	Н→үү	arXiv:1804.02716	2	2.2+0.9-0.8
<u>arXiv: 1804.02610</u>	ttH→WW/ZZ/ττ	arXiv:1803.05485	19	1.23 ^{+0.45} -0.43 3.2σ (2.8σ)
	ttH→bb (leptonic)	HIG-17-026 (submitted to JHEP)	21	0.72 ± 0.45 1.6σ (2.2σ)
Signal normalisation and uncertainties updated to the latest LHC Higgs XS WG (17)	ttH→bb (hadronic)	arXiv:1803.06986	6	0.9 ± 1.5
	Run 1 (7+8 TeV) bb/ττ/WW/ZZ/γγ	JHEP 09 (2014) 087	37	2.8 ± 1.0

The first observation of ttH production

- Results calculated using the profile test likelihood (L) ratio q, for which the asymptotic approximation entails
 - **a** q to follow a χ^2 distribution with ndof=set of POIs being tested
 - **I** the tail integral of q (p-value) at μ =0 to quantify the incompatibility level with the null hypothesis
 - the p-value to be converted into an equivalent significance of Z standard deviations for onetailed Gaussian distribution
 - the estimators for the parameters to equal to their hypothesized values when the likelihood is evaluated with an artificial dataset, a.k.a. the Asimov dataset
- \square Visualize the excess in terms of a log (S/B) distribution for each bin in the combination

"I like the dreams of the future better than the history of the past"

- Given mtop and couplings, the rest of properties can be also inferred from its decay products
- Level of precision reached (<0.3%) in measuring mtop impressive but
 comes with an ambiguity as to what parameter it is actually measured
- SM predictions agree with measurements probing the Wtb vertex
 degree of W polarisation tested at 2-5%
 level of tt spin correlations tested at O(10-20)%
- Top quark width direct measurement achieves <50% relative unc.
 consistent with the much more precise SM calculation

- Top modeling has a direct impact on extracting its properties
 several MC predictions show poor modeling of jet pull magnitude and angle
 crucial to understand soft physics even in something high-Q² scale like *tt*
- On our way to precision tests of the couplings
 a pivotal step already performed with the ttH observation

Logistics of the ttH combination

- Measure ttH signal strength, $\mu=\sigma/\sigma_{\text{theo.}}$, in combined fit for three configurations
 - per decay channel, CM (7+8 and 13 TeV), and overall (decay channel and CM)
 - branching ratios fixed to SM in all 5 decay channels
- Processes (e.g. t,tH) are treated as bkg. normalised to SM prediction accounting for their associated theo. unc.

The overall result combining all 88 categories

- The individual measurements consistent with each other within the uncertainties 7
 - $H(\gamma\gamma)$ and H(ZZ) channels still limited by stat. 7
 - $H \rightarrow multi-leptons$ and H(bb) dominated by syst. 7

tτH

Decomposition into statistical, experimental,

-0.25

-0.15

-0.15

-0.12

-0.05

Detailed breakdown of the total uncertainty

- Not unique way to split the identified sources of unc. and of their impact ($\Delta\mu$)
 - estimated by freezing each group in turn and subtracting from the total unc.
- Stat., expt., thsig. and thbgd. components **comparable** magnitude
 - thsig: theory mainly from inclusive ttH prediction
 - thbgd.: theory mainly from tt+heavy flavour prediction in ttH(bb)
 - **expt**: lepton efficiencies, lepton mis-ID, b tagging and MC stats equally important

Uncertainty source		$\Delta \mu$	
Signal theory	+0.15	-0.07	
Inclusive ttH normalisation (cross section and BR)	+0.15	-0.07	
ttH acceptance (scale, pdf, PS and UE)	+0.004	-0.004	
Other Higgs boson production modes	+0.002	-0.003	
Background theory	+0.14	-0.13	
tt + bb/cc prediction	+0.13	-0.11	
tt + V(V) prediction	+0.06	-0.06	
Other background uncertainties	+0.03	-0.03	
Experimental	+0.17	-0.15	
b-Tagging efficiency	+0.05	-0.04	
Misidentified lepton prediction	+0.06	-0.06	
Jet and $\tau_{\rm h}$ energy scale and resolution	+0.04	-0.04	
Lepton (inc. $\tau_{\rm h}$) trigger, ID and iso. efficiency	+0.08	-0.06	
Luminosity	+0.04	-0.03	
Photon ID, scale and resolution	+0.01	-0.01	
Other experimental uncertainties	+0.01	-0.01	
Finite number of simulated events	+0.08	-0.07	
Statistical	+0.16	-0.16	
Total	+0.31	-0.26	

arXiv: 1804.02610

Updated measurement from D0 including 9.7fb-1

