Jet substructure

Laís Schunk

DESY

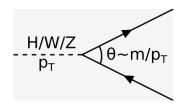
SM@LHC April 11, 2018

Motivation

- LHC plays a major role in particle physics today and it may be the key to probe beyond Standard Model theories.
- Unprecedented situation: production of heavy particles (W, Z and Higgs boson, top quark) with high momentum $(p_T \gg m)$.

Motivation

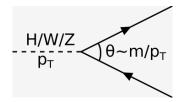
- LHC plays a major role in particle physics today and it may be the key to probe beyond Standard Model theories.
- Unprecedented situation: production of heavy particles (W, Z and Higgs boson, top quark) with high momentum $(p_T \gg m)$.
 - \rightarrow boosted regime \rightarrow substructure techniques

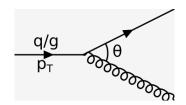


Motivation

- LHC plays a major role in particle physics today and it may be the key to probe beyond Standard Model theories.
- Unprecedented situation: production of heavy particles (W, Z and Higgs boson, top quark) with high momentum $(p_T \gg m)$.
 - \rightarrow boosted regime \rightarrow substructure techniques
- Jet substructure also reduce non-perturbative effects
 e.g. hadronization effects, UE contamination

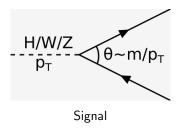
Boosted heavy particles

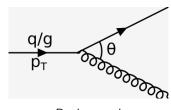

Boosted Z, W, H


- Boosted particles $(p_T \gg m)$:
 - ightarrowdecay in collimated final states ($heta \sim m/p_{
 m T}$)
 - \rightarrow clustered in a single jet.

Boosted heavy particles

Boosted Z, W, H


Standard QCD jet


- Boosted particles $(p_T \gg m)$:
 - ightarrowdecay in collimated final states ($heta \sim m/p_{T}$)
 - \rightarrow clustered in a single jet.

Boosted heavy particles

Boosted Z, W, H

Standard QCD jet

Background

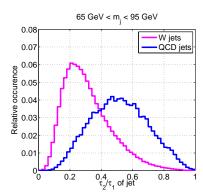
3 / 20

- Boosted particles $(p_T \gg m)$:
 - ightarrowdecay in collimated final states ($heta \sim m/p_{
 m T}$)
 - \rightarrow clustered in a single jet.
- How to discriminate between QCD jets and Z/W/H jets?

4□ ► 4₫ ► 4 ₹ ► ₹ ♥)Q(*

Jet Substructure

- Use **jet substructure** techniques
 - → look at dynamics inside the jet;
- Different techniques are available:
 - **Shapes** constrain soft gluon radiation, signal is colorless and has different radiation pattern than QCD jets; e.g. Energy correlation, N-subjettiness.
 - **Prong Finders** find hard prongs in the jets, usually signal has 2 symmetric prongs and QCD background has only 1; e.g. modified MassDrop, Y-splitter.
 - **Groomers** clean soft and large angle radiation, often dominated by non-perturbative effects e.g. modified MassDrop, SoftDrop

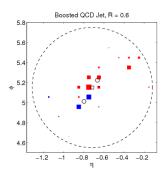

Example: N-subjettiness

• Measures radiation around 2 (pre-determined) axis.

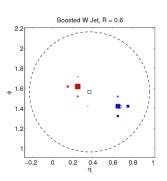
Thaler, Tilburg (2010)

$$\tau_{21} = \tau_2/\tau_1,$$

$$\tau_N = \frac{1}{p_{t,jet}R^{\beta}} \sum_{i \in jet} p_{t,i} \min_{a_i...a_N} (\theta_{ia_1}^{\beta}, ..., \theta_{ia_N}^{\beta}).$$

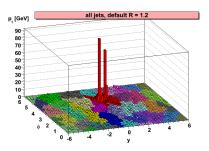


1**□** ▶ 4 **=** ▶ 4 **=** ▶ 9 **0 ○**


5 / 20

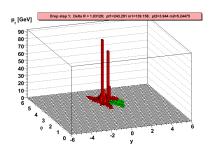
Example: N-subjettiness

QCD background


W boson signal

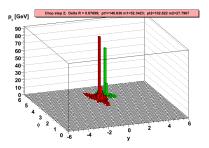
- Background has a more "diffuse" radiation pattern;
- 1 prong vs. 2 prong structure.

Removes soft and large-angle radiation;


Butterworth, Davison, Rubin, Salam (2008) Dasgupta, Fregoso, Marzani, Salam (2013)

Removes soft and large-angle radiation;

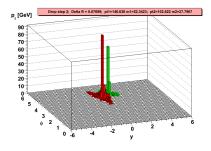
Butterworth, Davison, Rubin, Salam (2008) Dasgupta, Fregoso, Marzani, Salam (2013)


- **1** Break jet into two $j \rightarrow j_1 + j_2$; using C/A algorithm
- ② Check condition $\min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2}) > z_{cut};$

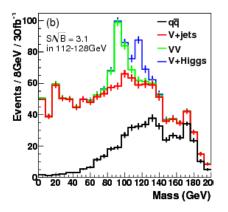
Removes soft and large-angle radiation;

Butterworth, Davison, Rubin, Salam (2008) Dasgupta, Fregoso, Marzani, Salam (2013)

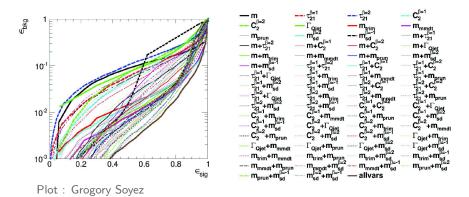
- Break jet into two $j \rightarrow j_1 + j_2$; using C/A algorithm
- ② Check condition $\min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2}) > z_{cut};$
- If fails, removes the subjet with lower p_T.



Removes soft and large-angle radiation;


Butterworth, Davison, Rubin, Salam (2008) Dasgupta, Fregoso, Marzani, Salam (2013)

- **1** Break jet into two $j \rightarrow j_1 + j_2$; using C/A algorithm
- ② Check condition $\min(p_{T,1}, p_{T2})/(p_{T,1} + p_{T,2}) > z_{cut};$
- If fails, removes the subjet with lower p_T.
- If passes, stop recursion;


mMDT is equivalent to SoftDrop wiht $\beta=0$

Signal and background for a 115 GeV SM Higgs.

 Parton shower Monte Carlo generators are very useful tools, but numerically costly and the physical message is not always clear.

• Example: ROC curves for different jet substructure methods

- We can acquire insight from analytical expressions
 - \rightarrow Better understand a phenomenon
 - \rightarrow Develop better tools (e.g. boson and top taggers)

- We can acquire insight from analytical expressions
 - \rightarrow Better understand a phenomenon
 - \rightarrow Develop better tools (e.g. boson and top taggers)
- Obtain more precise results
 - → Parton Shower only provide the lowest logarithm accuracy
 - → Resummation can achieve higher accuracies
 - \rightarrow Results are systematically improvable

10 / 20

- We can acquire insight from analytical expressions
 - \rightarrow Better understand a phenomenon
 - \rightarrow Develop better tools (e.g. boson and top taggers)
- Obtain more precise results
 - \rightarrow Parton Shower only provide the lowest logarithm accuracy
 - → Resummation can achieve higher accuracies
 - \rightarrow Results are systematically improvable
- Compute robust uncertainty bands
 - ightarrow Correct assessment of the higher orders corrections we are neglecting

10 / 20

Some recent developments

 Improvements to the fitting of the strong coupling Baron, Marzani, Theeuwes (2018)

Les Houches 2017 SM Working Group

- Generalizations of energy-correlation functions
 Moult, Necib, Thaler (2016)
- Observables decorrelated from jet masses
 Dolen, Harris, Marzani, Rappocio, Tran (2016)
 Moult, Nachman, Neil (2017)
- Dichroic observables for 2-prong tagging
- Precision calculations in groomed jet mass
- Advances in machine learning techniques
 See Larkoski, Moult, Nachman (2017) for an overview

Some recent developments

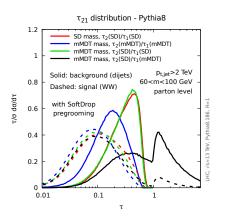
 Improvements to the fitting of the strong coupling Baron, Marzani, Theeuwes (2018)
 Les Houches 2017 SM Working Group

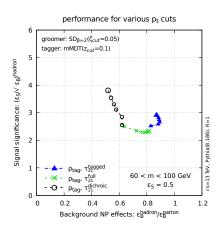
- Generalizations of energy-correlation functions
 Moult, Necib, Thaler (2016)
- Observables decorrelated from jet masses
 Dolen, Harris, Marzani, Rappocio, Tran (2016)
 Moult, Nachman, Neil (2017)
- Dichroic observables for 2-prong tagging
- Precision calculations in groomed jet mass
- Advances in machine learning techniques
 See Larkoski, Moult, Nachman (2017) for an overview

- Explore the interplay between groomers / prong finders and jet shapes;
- Example: N-subjetiness Salam, LS, Soyez (2016)
 Usual T21 measures

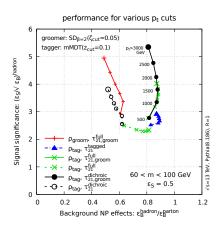
$$au_{21} = rac{ au_2(\mathsf{mMDT})}{ au_1(\mathsf{mMDT})} \quad \mathsf{or} \quad rac{ au_2(\mathsf{SD})}{ au_1(\mathsf{SD})} \quad \mathsf{or} \quad rac{ au_2(\mathsf{plain})}{ au_1(\mathsf{plain})}$$

- Explore the interplay between groomers / prong finders and jet shapes;
- Example: N-subjetiness Salam, LS, Soyez (2016)
 Usual T21 measures

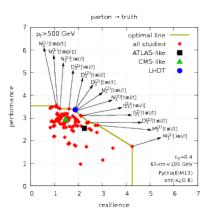

$$au_{21} = rac{ au_2(\mathsf{mMDT})}{ au_1(\mathsf{mMDT})} \quad \mathsf{or} \quad rac{ au_2(\mathsf{SD})}{ au_1(\mathsf{SD})} \quad \mathsf{or} \quad rac{ au_2(\mathsf{plain})}{ au_1(\mathsf{plain})}$$


• **Dichroic**: different subjets for numerator / denominator in τ_{21} ratios;

$$au_{21}^{ ext{dichroic}} \equiv rac{ au_{2}^{ ext{full} \ / \ ext{SD}}}{ au_{1}^{ ext{tagged}}}$$


- τ_2 on large jet \rightarrow sensitivity to diffent color structures
- τ_1 on small jet \rightarrow only sensitive to the invariant mass \rightarrow smaller influence of non-perturbative effects.

Dichroic version has better separation between signal and background



- Dichroic τ_{21} variation
 - \rightarrow increase in discriminating power;

- Dichroic τ₂₁ variation
 → increase in discriminating power;
- With pre-grooming step
 → reduction of NP effects and still
 has a better performance;
- Performance gain increases as p_t increases.

Comparison between a variety of jet shapes
 Les Houches 2017 SM Working Group

 Dichroic version of observables show good performance with relatively low sensitivity to non-perturbative effects

- Connection between measurements and calculations
 For experimental aspects see Jennifer ROLOFF talk later today
- Jet mass is one of the simplest observables
- Grooming eliminates part of UE contamination
- We studied modified MassDrop Tagger and SoftDrop

- Connection between measurements and calculations For experimental aspects see Jennifer ROLOFF talk later today
- **Jet mass** is one of the simplest observables
- Grooming eliminates part of UE contamination
- We studied modified MassDrop Tagger and SoftDrop
- For **boosted jets** $p_T \gg m \rightarrow \rho \equiv m/(p_T R) \ll 1$ $\rightarrow \log$ enhancements $\alpha_c^n \log^{2n}(1/\rho)$

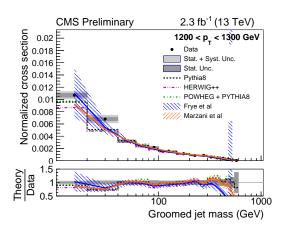
Needs to be resummed at all orders

- Various interesting QCD structures emerging
 - For mMDT it becomes $[\alpha_s f(z_{\text{cut}}) \log(1/\rho)]^n$ at leading-log
 - Finite z_{cut} introduce a flavour changing matrix structure
- Compare with experiment \rightarrow needs a matching procedure:

$$\underbrace{N^k L L}_{\text{small } \rho} + \underbrace{N^m L O}_{\text{large } \rho}$$

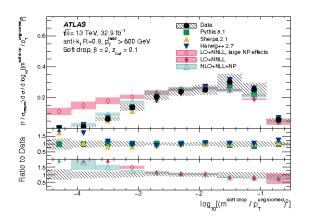
```
Small \rho \to \mathbf{resummation} of large logarithms
Large \rho \to \mathbf{fixed}-order (exact at \mathcal{O}(\alpha_s^m))
```

- Calculations done with different theoretical approaches
 - ullet NLL + NLO for $z_{
 m cut} \ll 1$


Frye, Larkoski, Schwartz, Yan (2016)

• LL + NLO for all $z_{\rm cut}$

Marzani, Soyez, LS (2017)

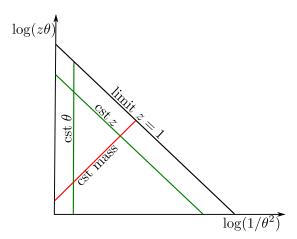

17 / 20

Comparison with CMS measurements using mMDT

CMS-PAS-SMP-16-010

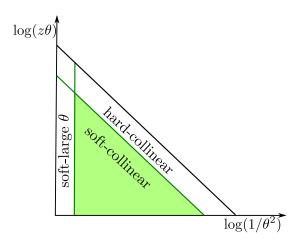
ullet Comparison with ATLAS measurements using SoftDrop (eta>0)

CERN-EP-2017-231

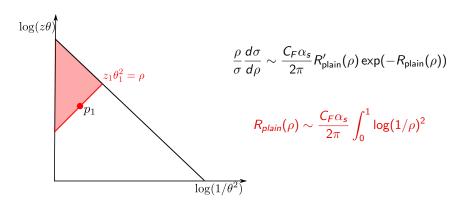

Conclusion

- Jet substructure has many applications in particle physics today
- Very active community, both in experiment and theory
- Analytical studies:
 - Better insight of existing tools
 - ② Development of new tools
 - 4 Higher accuracy results
 - Robust uncertainty bands
- Increasing role as LHC reaches higher energy scales

Backup slides

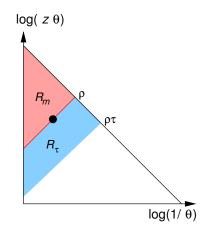

Lund diagrams

• Lund diagram : graphical representation of the results in $z\theta$ (transverse momentum) vs. $1/\theta^2$ (emission angle) coordinates.



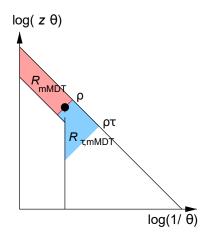
Lund diagrams

• Lund diagram : graphical representation of the results in $z\theta$ (transverse momentum) vs. $1/\theta^2$ (emission angle) coordinates.


Calculations

20 / 20

Laís Schunk Jet substructure SM@LHC 2018

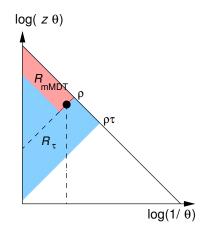


• Jet mass with cut on τ_{21}

$$\left. \frac{\rho}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho} \right|_{<\nu} = R'_{m} \exp\left(-R_{m+\tau}\right)$$

	R'_m	$R_{m+\tau}$	NP
full	large	large	large

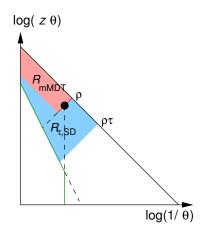
20 / 20


• Jet mass with cut on τ_{21}

$$\left. \frac{\rho}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho} \right|_{<\nu} = R'_{m} \exp\left(-R_{m+\tau}\right)$$

	R'_m	$R_{m+ au}$	NP
full	large	large	large small
mMDT/SD	small	small	small
	I	l	I

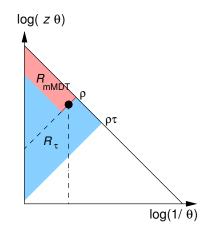
20 / 20


Laís Schunk Jet substructure SM@LHC 2018

• Jet mass with cut on au_{21}

$$\left. \frac{\rho}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho} \right|_{<\nu} = R_m' \exp\left(-R_{m+\tau}\right)$$

	R'_m	$R_{m+\tau}$	NP
full	large	large	large
mMDT/SD	small	small	small
dichroic	small	large	large


• Jet mass with cut on au_{21}

$$\left. \frac{\rho}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho} \right|_{<\nu} = R'_{m} \exp\left(-R_{m+\tau}\right)$$

	R'_m	$R_{m+\tau}$	NP
full	large	large	large
mMDT/SD	small	small	small
dichroic	small	large	large
dichroic + SD	small	large	small

20 / 20

Laís Schunk Jet substructure SM@LHC 2018

ullet Jet mass with cut on au_{21}

$$\left. \frac{\rho}{\sigma} \frac{\mathrm{d}\sigma}{\mathrm{d}\rho} \right|_{<\nu} = R'_m \exp\left(-R_{m+\tau}\right)$$

	R'_m	$R_{m+\tau}$	NP
full	large	large	large
mMDT/SD	small	small	small
dichroic	small	large	large
dichroic + SD	small	large	small

$$\left| \frac{\rho}{\sigma} \frac{d\sigma}{d\rho} \right|_{\tau_{21}^{\text{dichroic}}}^{\text{LL}} \stackrel{\text{f.c.}}{=} \frac{C_F \alpha_s}{\pi} \log \frac{1}{y} \times \exp \left[-\frac{C_F \alpha_s}{2\pi} \log^2 \frac{1}{\tau \rho} \right]$$