Observation of top quark production in proton-nucleus collisions Phys. Rev. Lett. 119 (2017) 242001

CMS Experiment at the LHC, CERN Data recorded: 2016-Nov-19 06:44:18.053352 GMT Run / Event / LS: 285517 / 2067670785 / 1459 Hella G. K. Krintiras on behalf of CMS collaboration UCLouvain

Observation of top quark production in proton-nucleus collisions Phys. Rev. Lett. 119 (2017) 242001

CMS Experiment at the LHC, CERN Data recorded: 2016-Nov-19 06:44:18.053352 GMT Run / Event / LS: 285517 / 2067670785 / 1459

• How we ended up having the HL request already fulfilled?

• There was any major concern to address ?

• What we have learned ?

Throwing a bullet through an apple... Why ?

- Initially only thought to give answers on **hot** questions about **cold** QCD matter
 - \blacksquare The first collisions of unequal species (pPb) (a) LHC revealed surprises
 - signs similar to those of the Quark-Gluon Plasma (QGP)
 - interest exploded (the 5th most cited CMS paper in PLB !)

Throwing a bullet through an apple... How ?

- Initially only thought to give answers on hot questions about cold QCD matter
 - The first collisions of unequal species (**pPb**) (a) LHC revealed surprises
 - signs **similar** to those of the Quark-Gluon Plasma (QGP)
 - interest exploded (the 5th most cited CMS paper in PLB !)
- Ideally LHC is meant for equal colliding species
 - its "two-in-one" magnet design gave birth to "cogging" (O.o ?) $_{
 m pPb}$ int. Luminosity (${\mathfrak L}$ int)
 - no preceding design (!= BNL RHIC)

A lower (!) limit on the achieved energy ($\sqrt{s_{NN}}$)

The first search analysis for tt in nuclear collisions !

- I+jets : t t \rightarrow bW bW \rightarrow b l b jj' + missing momentum (MET) i.e., crucial to search for the lepton (l= e,µ) & non-b jets (a.k.a. the light jets j,j')
 - \square j,j' jets are paired based on their proximity in (η,φ) space (min ΔR separation)

 \rightarrow to construct the variable of interest; here the m_{jj} inv. mass

main backgrounds (bkg.) from W+jets and QCD multijet production

The data-driven bkg. modeling

- EW processes (W+jets, also DY) modeled with PYTHIA (v.6.424, tune Z2*)
 - \bowtie pN \rightarrow W + X (N=p,n) i.e., a mixture of pp and pn interactions this is crucial
 - Landau parameterization found as a proper description (hint: combinatorics)
 - also supported from POWHEG (v2) interfaced with CT14+EPPS16
 - effects from nuclear modifications inferred in-situ
- **QCD** multijet process extracted from failed iso (ID) control region in $\mu(e)$ +jets channel
 - kernel parameterization (hint: non trivial behavior for fake/non prompt l)
 pre-fit normalization from low-MET (< 20 GeV) events

All samples are tuned to reproduce the global pPb event properties

Measuring the tt production cross section (l+jets)

- **Basic ingredients: acceptance** (\mathcal{A}) and **efficiency** (ε)
 - $\Re = 0.060 \pm 0.002$ (tot) (0.056±0.002(tot)) in µ(e)+jets channel
 - determined () NLO with POWHEG (v2) in the fiducial region
 - [z] ε = 0.91±0.04(tot) (0.63±0.03(tot)) in µ(e)+jets channel
 - measured in data with "tag-and-probe" method (Z boson candle) \pounds int =174 nb-1

 $\sigma_{tt} = 45 \pm 8(tot) nb$

 $d\sigma_{tt} / \sigma_{tt} = 17 \% (!)$

- Total number of signal (S) events in all 6 cats. : S = 710 ± 130(tot)
 - combination dominated by µ+jets channel

Background completely determined from data !

An "alternative" to the Bayesian posterior

- To further support the consistency with the production of top quarks
 - the inv. mass of jj'b triplet (hadronic top mass) is plotted
 - b jet candidate with the highest b-tag discriminator value
 - the minimum difference to inv. mass of lvb triplet (leptonic top mass) is considered
 - signal and bkg. contribution scaled to post-fit m_{jj} values

Up-to-date compilation: 4 🗸 snn & 2 systems @ LHC !

- First experimental observation of the top quark in nuclear collisions
 - σ_{tt} measured in two independent decay channels i.e., μ ,e+jets
 - $d\sigma_{tt} / \sigma_{tt} = 17\%$ in the l+jets combination
 - consistent with the scaled pp data as well as pQCD calculations
- Minimally relies on assumptions from MC simulation
 - paves the way for the study in AA collisions

PRL Physics Synopsis, Dec. 2017

CERN Courier, Nov. 2017

CMS observes top quarks in proton– nucleus collisions

The top quark, the heaviest elementary particle in the Standard Model, has been the subject of numerous detailed studies in proton-

antiproton and proton–proton collisions at the Tevatron and LHC since its discovery at Fermilab in 1995. Until recently, however, studies of top-quark production in nuclear collisions remained out of reach due to the small integrated luminosities of the first heavy-ion runs at the LHC and the low nucleon–nucleon (NN) centre–of-mass energies (\sqrt{s}_{NN}) available at other colliders such as RHLC in the US.

Proton–lead runs at $\sqrt{s_{NN}} = 8.16$ TeV performed in 2016 at the LHC have allowed the CMS collaboration to perform the

(Above) Top-quark pair-production cross-section in pp and pPb collisions as a function of the centre-of-mass energy per nucleon pair. (Right) Invariant mass distribution of the hadronic top-quark candidates in selected events with two b-taged jets.

first-ever study of top-quark production in nuclear collisions.

Top-quark cross-sections at the LHC can be computed with great accuracy via perturbative quantum chromodynamics

(pQCD) methods, thus making this quark a "standard candle" and a tool for further investigations. In proton-nucleus collisions, in particular, the top quark is a novel probe of the nuclear gluon density at high virtualities in the unexplored high Bjorken-x region. In addition, a good understanding of top-quark production in proton-nucleus collisions is crucial for studies of the space-time

The statistical significance of the measurement

- The *null* hypothesis is excluded at a level of
 - **>5** σ taking into account syst. unc. by:
 - the observed variation of the likelihood as a function of the POI
 - PLR from pseudo-data generated from the background-only model

Indeed, the first observation of top quarks in pPb !

The signal modeling

- tt process modeled with **PYTHIA** (v.6.424, tune Z2*)
 - □ ρ N → tt + X (N=p,n) i.e., a mixture of ρ p and ρ n interactions not crucial
 - effects from nuclear modifications studied with POWHEG (v2) interfaced with CT14+EPPS16
 - split the total contribution in a resonant (left Fig.) and a non resonant (right Fig.) part
 - resonant: both j,j' (reco) matched with a light flavor parton (truth)

Measuring the tt production cross section (µ,e+jets)

 $\sigma_{tt} = 44\pm3(stat)\pm8(syst)$ nb

e+jets:

 $\sigma_{tt} = 56 \pm 4(stat) \pm 13(syst) \text{ nb}$

e+jets hampered more by bkg. contamination

Iess precise than μ +jets i.e., $d\sigma_{tt} / \sigma_{tt} = 23 \%$ vs 18 %

The fit procedure in detail

- In order to ensure stability of the complex fit procedure
 - N(bkg.) floats with N(QCD) constrained with μ , σ from low-MET normalization
 - N(signal) floats with event category coupling based on $\epsilon_{\rm b.}$, the latter constrained with μ from simulation and conservative σ :
 - N4j2b= $\epsilon_b\epsilon_b N(signal), N_{4j1b}= 2\epsilon_b(1-\epsilon_b) N(signal), N_{4j0b}= (1-\epsilon_b)(1-\epsilon_b) N(signal)$
- ${f a}$ In order to evaluate the uncertainty on the signal yields
 - \blacksquare profiling of the likelihood is performed over the full set Θ of nuisances

$$\mathcal{L}(\sigma_{t\bar{t}}, \Theta) = \prod_{l} \mathcal{P}_{oisson} \left(N_{l}^{obs}, N_{l} \right) \cdot \prod_{i} \mathcal{G}_{auss}(\theta_{i}^{0}, \theta_{i}, \sigma_{\theta_{i}})$$

$$N(bkg.), f(QCD), MPV \text{ and width of Landau}$$

$$Eb$$

$$Physics objects$$

$$A, \epsilon, \pounds int$$

$$JES effect \text{ on } m_{jj}$$

$$Physics object$$

$$Uight jets$$

$$V(m_{jl}) = N(bkg.)^{*}[QCD)^{*}(QCD)^{*}(ACD)^{*}(ACD)^{*}(Signal)^{*}(Signal), fe[0,1]$$

$$Analysis boxes$$

$$IL4jOb \quad IL4j1b \quad IL4j2b$$

Splitting uncertainty in a stat & syst component

- Neither trivial nor unique task
 - **stat:** fix nuisances to post-fit values and refit with floating σ_{tt}
 - **syst**: \checkmark (tot²-stat²)
- effect of identified sources for systematic variations
 - \blacksquare fix all other nuisances to post-fit values and refit within ±1 σ
 - syst != quadratic sum of the effects (hint: mind the correlations)

The leptonic top mass

- \square The longitudinal v momentum from the 4-momentum conservation in the W(lv) vertex
 - assuming as W boson inv. mass the world average of 80.4 GeV
 - ambiguities raised as
 - two real solutions: the one which minimizes $|p_{z,v}-p_{z,l}|$
 - $\,$ $\,$ imaginary solutions: real part of the quadratic equation in $\rho_{z,v}$

Theoretical setup for cross section calculation

- Rely on the two fundamental concepts of QCD
 - factorization (calculable) and universality (input from PDFs)
 - $\sigma_{PA} = A \times \sigma_{PP}$ (A=208 for Pb isotope @ LHC)
- MCFM (v8.0, nproc = 141) NLO event calculator with state-of-the-art (n)PDFs
 - bound nucleons' PDF: EPPS16 NLO ; baseline free proton PDF: CT14 NLO
 - nPDF net effects result in a small +4% modification (R_{PPb}) of σ_{tt}
 - nPDF ⊗ PDF uncertainty from the provided 56+40 eigenvalues → **9%**
 - full calculation repeated with CT10+EPS09 combination
 - considering the 52+32 error sets \rightarrow 7%
 - **a** QCD scales choice: μ R = μ F = **172.5** GeV
 - $\,$ scale variations by halving/doubling the $\mu {\mbox{\tiny R}}, \, \mu {\mbox{\tiny F}} \, \rightarrow \, 3\%$
- **k-factor** (NLO \rightarrow NNLO) obtained with TOP++

