Higgs – some highlights and open questions

SM@LHC summary session 13.04.2018

- Roberto Covarelli, Sarah Heim, Tilman Plehn -

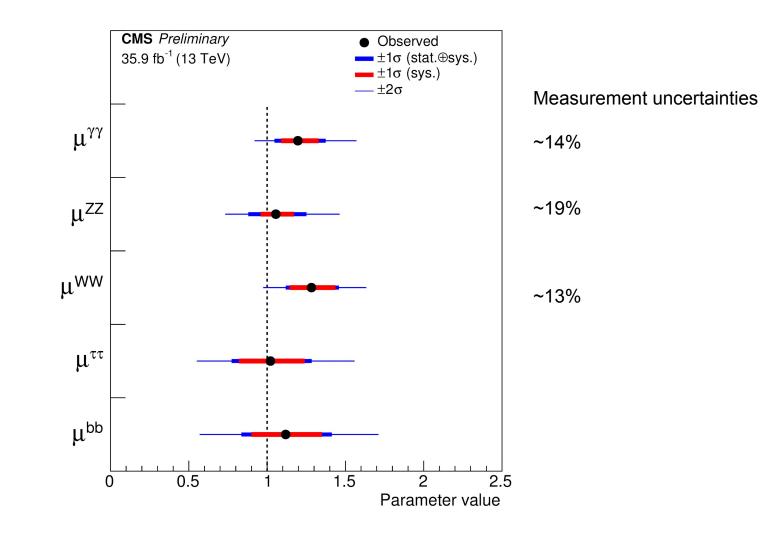
Some comments first

Thanks to the organizers for this very well-organized conference!

The boat trip was great!

These slides are

- not a complete summary
- meant to be discussion starters


Please interrupt any time!

Status of Higgs prod. modes observation at LHC

	☑ Observation☑ Evidence☑ Analysis exists	ggH ggH			- ZH WZ WZ G	ttH ^g oor H	
	combination	A+C : ☑	A+C : ☑	A+C :		$\begin{array}{c} \mathbf{A}: \mathbf{\square}, \mathbf{C}: \mathbf{\square} \\ \mathbf{A} + \mathbf{C}: \mathbf{\square} \end{array}$	
	Н→үү	A: ☑ C: ☑	A: ☑	A: 🗆	A: 🗆	A: 🗆	A: □ C: □
Decay channel	H→Zγ	A: □ C: □					
	$H \rightarrow ZZ^{(*)} \rightarrow 41$	A: ☑ C: ☑	A: □ C: □	A: □ C: □	A: □ C: □	A: □ C: □	
	$H \rightarrow WW^{(*)} \rightarrow l\nu l\nu$	A: ☑ C: ☑	A:⊠ C:□	A : □ C : □	A:□ C:□	A: 🗆	C: 🗆
	H→bb	C: □ boosted	A:□ C:□	A: C:		A: □ C: □	C: 🗆
	$H \rightarrow Y(1S)\gamma$	A: □ C: □					
	Н→сс				A: 🗆		1
	H → J/ψγ	A: 🗆					
	Η→φγ	<mark>A: □</mark>					
	Η→ργ	A: 🗆					
	Η→ττ	A+C : ☑				C: 🗆	
	Н→μμ	A: □ C: □					
	Н→ее	C: 🗆					

(Marc Escalier)

Higgs decays to bosons

1st	2nd	3rd	
u+d BR SM: ? BR limit (rho gamma): 52*SM	c BR SM: 2.9% BR limit: ~SM * 110	t BR SM: Measured ttH mu: ~1.25	
	s BR SM ? BR limit (phi gamma): 200 * SM	b BR SM: 57.5% Measured mu: ~ 1	
e BR SM: ~10^(-5) BR limit: only at 8 TeV	mu BR SM: 0.02% BR limit: ~SM * 3	tau BR SM: 6.30% Measured mu: ~ 1	

What can we do with more statistics?

- Measure H->mumu, H->cc and rare decays (e.g. invisible, gamma+onia, gamma+light meson...)
 - Are some of them detector-limited? Especially from trigger?
- In general measure couplings as precisely as possible
 - Clearly still big room for improvement on couplings to tau, b, t
 - H-> WW and gamma gamma already with some systematics limitations, H-> 4l not yet
 - did H \rightarrow VV already hit the limits on k_f constraints?
- **Differential distributions** (probe FO and resummation results, now becoming precise, < 10% on the spectra)

Some other ideas

- mH measurement in different pT bins (model-independent width measurement with interferometry)
- Differential measurements with H->tautau, H->bb?
- CP with H->tautau, ZH/VBF (more sensitivity than 4l)

<u>More ideas for measurements?</u>

- ggH, VBF very precise, where are theory uncertainties limiting?
- Mass effects in distributions for loop-induced vertices?
- Need even more precise low and high Higgs boson transverse momentum calculations to search for new physics
- Offshell measurements: better gg->VV theory predictions + guidance on best observables
- ttbb modelling recommendations (crucial for ttH)
- Implementations in MC codes sufficient?
- How reliable is a quoted 0.5% theory uncertainty?
- More wishes?

Work on interpretation frameworks

- Data calling the shots these days!
 BSM Higgs papers rare on hep-ph
- CP: measurement needed, to define e.g. effective Lagrangian
 - VBF and VH potentially powerful
 - experimental/theoretical limitations?
 - Framework to combine channels (crossing symmetry combine ZH and VBF p.ex.)?
 - Uncertainties for distributions (multidimensional)?
- EFT
 - Linear (HEFT) and non-linear (SMEFT) both needed?
 - More systematic SMEFT studies needed? D8 operators?
 - Available EFT tool chains sufficient?
 - Electroweak corrections???
 - When will we need to consider fermion couplings?
- General BSM
 - Guidance from theory welcome!
 - (Which observables to look at, etc.)

Role of theory in BSM Higgs searches?

- Link to testable models? Dark matter? Extended Higgs sectors? Higgs physics more than SM-like couplings measurements?!
- Do theorists need to do EFT and similar analyses? How can theory analyses be useful? Are ATLAS/CMS actually using theory experience?
- Which data should theorists use? pT distributions? STXS? How do we do correlations (8, 13 TeV, different measurements)?
- How can theorists understand/use complex analyses?
- When will ATLAS/CMS combine gauge and Higgs in SMEFT?
- Why are 13 TeV results not more constraining than 8 TeV?
 - Probably because of lacking correlations etc.