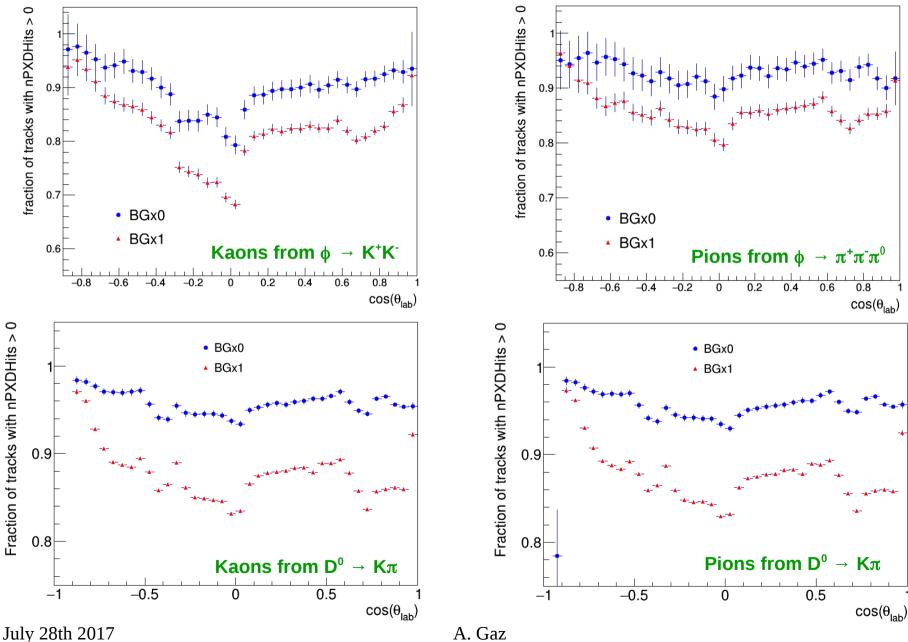
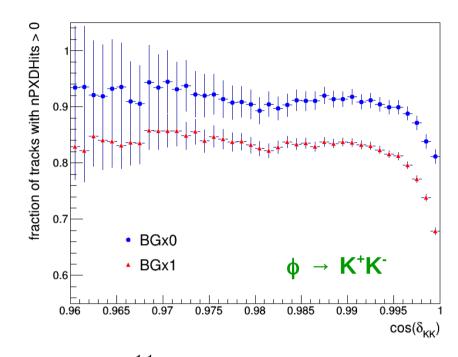
Tracking and PXDHits association issues with K's (VXDTF1 vs VXDTF2 performance)


Ale Gaz, KMI, Nagoya University

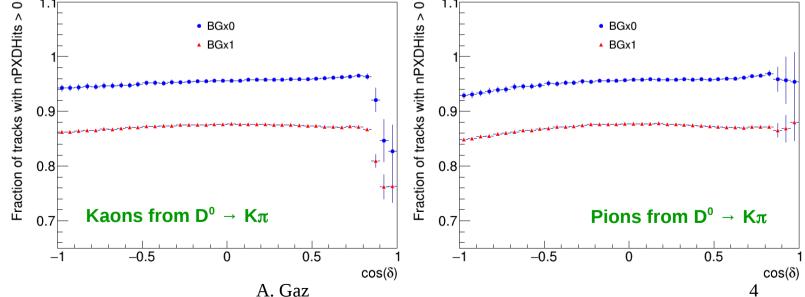
Tracking meeting, July 28th 2017

Introduction

- I am working on a sensitivity study of TDCPV of $B^0 \rightarrow \phi K^0$;
- I am considering both $\phi \to K^+K^-$ and $\phi \to \pi^+\pi^-\pi^0$ decays;
- For the analysis, it is essential to have a precise determination of the decay vertex of my signal B candidate. The vertex is essentially determined by the tracks of the ϕ daughters;
- To ensure optimal vertexing resolution, I require that each track from the φ decay has at least one PXDHit associated to it;
- In all the studies I have done in the last ~2 years, I have always observed that the probability for the kaons (from ϕ decay) to have at least on PXDHit associated to it is significantly lower than it is for the π 's from ϕ or for the μ 's from J/ ψ ;
- Last April I gave a presentation based on MC7 samples;
- Today I will show some more results based on recently produced MC9 samples, comparing the performance of VXDTF1/2.


Reminder, MC7 results

A. Gaz


Reminder, MC7 results

- In the φ → K⁺K⁻ decay, the kaons are almost collinear, so the hits of the two kaons are relatively close to each other;
- As the angle (δ) between the kaons decreases, the efficiency of associating the PXDHits to the track decreases.

The same effect is seen on the kaons from $D^0 \rightarrow K\pi$ (but not on the π 's?)

July 28th 2017

MC9 samples

 To test the newly developed VXDTF2 and compare its performance against VXDTF1 (as much as possible in an "apples to apples" way) the following samples have been generated:

Decay	VXDTF version	Beam background	Status
$\phi[K^+K^-] K_S[\pi^+\pi^-]$	1	х0	Done
$\phi[K^+K^-] K_S[\pi^+\pi^-]$	1	x1	Pending
$\phi[K^+K^-] K_S[\pi^+\pi^-]$	2	х0	Done
$\phi[K^+K^-] K_S[\pi^+\pi^-]$	2	x1	Pending
$\phi[\pi^{+}\pi^{-}\pi^{0}] K_{S}[\pi^{+}\pi^{-}]$	1	х0	Done
$\phi[\pi^+\pi^-\pi^0] \ K_{S}[\pi^+\pi^-]$	1	x1	Pending
$\phi[\pi^+\pi^-\pi^0] \ K_{S}[\pi^+\pi^-]$	2	х0	Done
$\phi[\pi^+\pi^-\pi^0] \ K_{S}[\pi^+\pi^-]$	2	x1	Pending

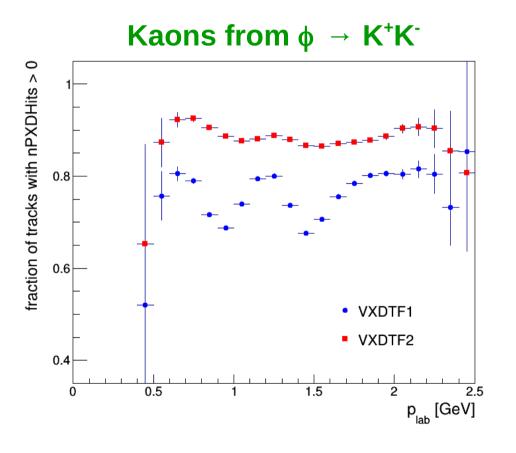
Many thanks to Jake Bennett for pushing these through with high priority

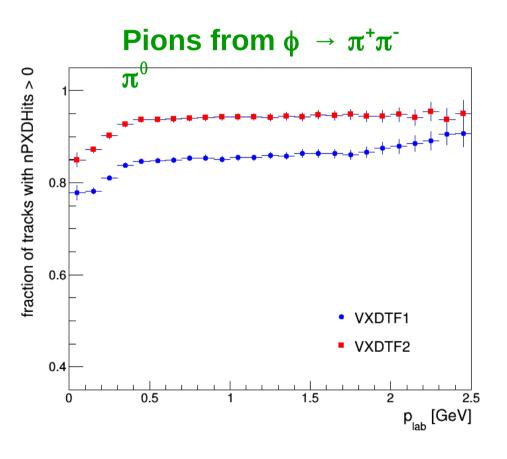
Each sample contains 1M events.

$\phi[K^+K^-]K_s[\pi^+\pi^-]$ efficiency breakdown

BGx0 VXDTF1 VXDTF2

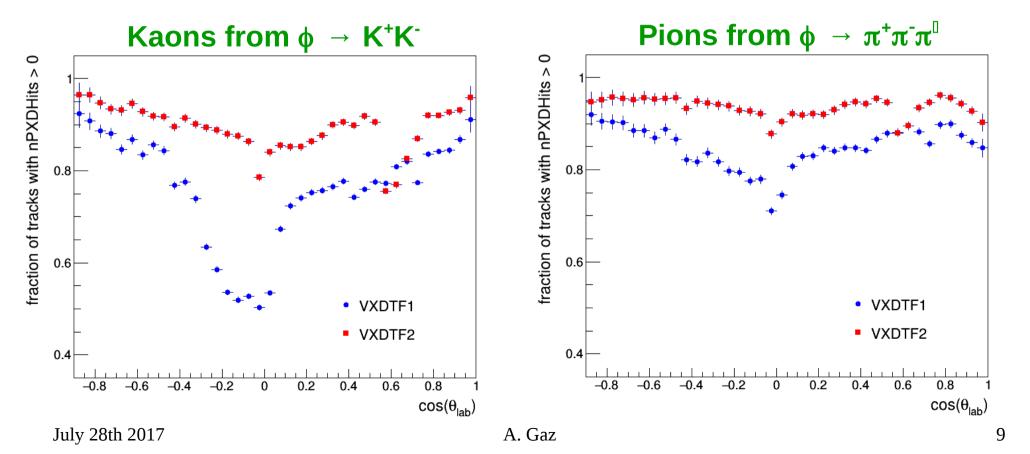
	Efficiency	Rel. efficiency	Efficiency	Rel. efficiency
Reconstructed $(M_{bc} > 5.25, \Delta E < 0.2)$	47.5%	47.5%	49.9%	49.9%
M(φ) cut	45.7%	96.1%	47.9%	96.1%
d _o (K) cut	43.3%	97.0%	46.4%	96.9%
z ₀ (K) cut	44.3%	97.7%	45.5%	98.1%
PID(k)	39.0%	90.2%	41.1%	90.3%
K PXD hits cut	26.8%	68.6%	33.7%	82.0%
K _s VtxProb	26.4%	98.5%	33.2%	98.6%
φ VtxProb	25.9%	98.3%	32.8%	98.6%
B VtxProb	24.0%	92.6%	30.1%	91.8%


$φ[π^+π^-π^0]$ $K_s[π^+π^-]$ efficiency breakdown

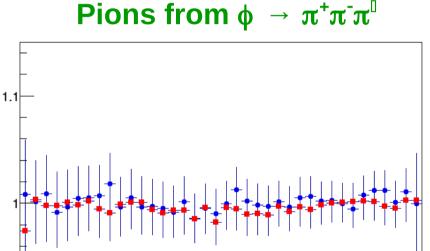

BGx0 VXDTF1 VXDTF2

	Efficiency	Rel. efficiency	Efficiency	Rel. efficiency
Reconstructed $(M_{bc} > 5.25, -0.1 < \Delta E < 0.2)$	30.9%	30.9%	31.8%	31.8%
M(π ⁰) cut	30.2%	97.5%	31.0%	97.5%
E(π ⁰) cut	27.1%	90.0%	27.8%	89.7%
$M(\phi)$ and $M(K_s)$ cut	25.6%	94.3%	26.3%	94.5%
$d_0(\pi)$ cut	24.3%	94.8%	25.1%	95.5%
$z_0(\pi)$ cut	23.9%	98.4%	24.8%	98.8%
π PXD hits cut	18.8%	78.9%	23.0%	92.7%
K _s VtxProb	18.5%	98.3%	22.6%	98.4%
φ VtxProb	18.4%	99.3%	22.5%	99.9%
B VtxProb	18.1%	98.3%	22.0%	98.0%

Momentum dependence


- Plotting the fraction of tracks with at least one PXDHit associated to it as a function of the momentum, some features appear...;
- We still see very significant differences between K's and π 's:

Polar angle dependence


- Plotting the PXDHit association efficiency as a function of the polar angle, the structures become more clear;
- Good news: the large dip at cosθ ~ 0 in the kaons plot almost disappears with VXDTF2;
- Bad news: another dip (visible also with the π 's) appears at $\cos\theta \sim 0.6$.

Charge asymmetry

- Here I am plotting the ratio of K^+/K^- (π^+/π^-) PXDHit association efficiency as a function of the cosine of the polar angle;
- No significant charge asymmetry is observed.

Kaons from $\phi \rightarrow K^{\dagger}K^{-}$ K*/K PXDHit efficiency VXDTF1 0.9 VXDTF2 $cos(\theta_{lab})$

VXDTF1

VXDTF2

0.9

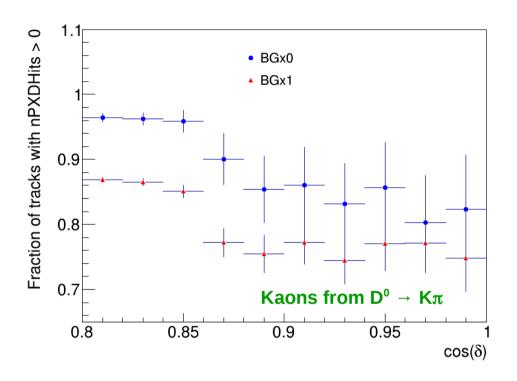
 $cos(\theta_{lab})$

Comments

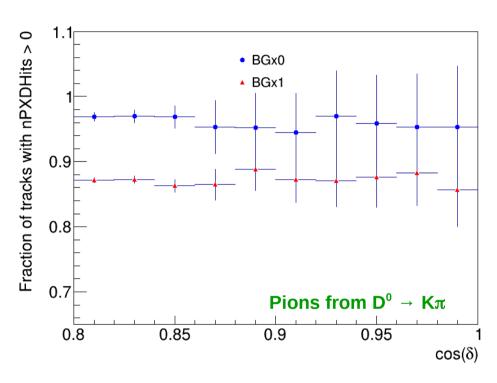
- I compared the performance of VXDTF1/2 on samples of MC9 φ → K⁺K⁻ and π⁺π⁻π⁰ decays;
- There is a clear increase of performance using the new VXDTF2...
- ... however the overall performance is similar to that of VXDTF1 on MC7 (see backup for details);
- We still have very relevant differences between K's and π 's;
- Today's results are based on BGx0 MC, I will analyze the BGx1 samples as soon as they become available;
- I am at your disposal to perform any other kind of checks you consider interesting.

Backup Slides

Efficiency breakdown: $\phi(K^{\dagger}K^{-}) K_{s}(\pi^{\dagger}\pi^{-})$

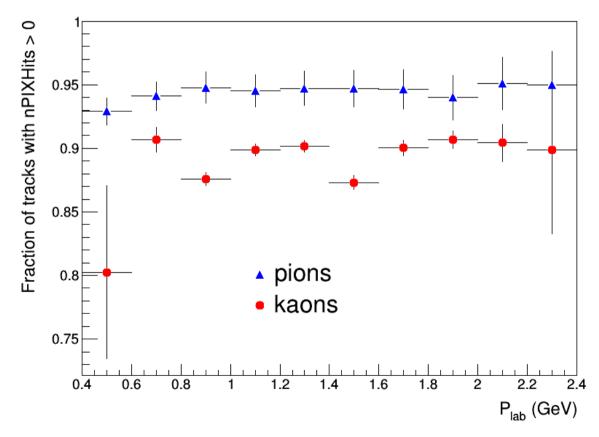

	# events	Efficiency	Rel. efficiency	Cand. multiplicity
Generated	2000000			
Reconstructed $(M_{bc} > 5.25, \Delta E < 0.2)$	1088443	54.4%	54.4%	1.0243
M(φ) cut	1045203	52.3%	96.0%	1.0139
d _o (K) cut	1010450	50.5%	96.7%	1.0077
z ₀ (K) cut	979978	49.0%	96.7%	1.0070
K PXD hits cut	821614	41.1%	83.8%	1.0063
PID(K)	756615	37.8%	92.1%	1.0039
K _s VtxProb	712507	35.6%	94.2%	1.0027
K _s flight length sign.	705888	35.3%	99.1%	1.0023
φ VtxProb	687746	34.4%	97.4%	1.0020
B VtxProb	621262	31.1%	90.3%	1.0008

Efficiency breakdown: $\phi(\pi^{\dagger}\pi^{\bar{}}\pi^{0})$ $K_{s}(\pi^{\dagger}\pi^{\bar{}})$


	# events	Efficiency	Rel. efficiency	Cand. multiplicity
Generated	2000000			
Reconstructed $(M_{bc} > 5.25, -0.1 < \Delta E < 0.2)$	588446	29.4%	29.4%	1.343
M(π ⁰) cut	528893	26.4%	89.9%	1.171
E(π ⁰) cut	468782	23.4%	88.6%	1.118
$M(\phi)$ and $M(K_s)$ cut	453176	22.7%	96.7%	1.071
$d_0(\pi)$ cut	439441	22.0%	97.0%	1.058
z ₀ (π) cut	434397	21.7%	98.9%	1.056
π PXD hits cut	402929	20.1%	92.8%	1.055
K _s VtxProb	384214	19.2%	95.4%	1.054
K _s flight length sign.	380784	19.0%	99.1%	1.053
φ VtxProb	377025	18.9%	99.0%	1.051
B VtxProb	347526	17.4%	92.2%	1.047

Comparing K/π from $D^0 \rightarrow K\pi$

• Zoom in the high $cos(\delta)$ region, the effect is definitely statistically significant:


July 28th 2017

- Comment from Eugenio: when π and K are collinear, they cannot have the same momentum;
- But why is the effect only visible on the K's?

Momentum dependence

- The φ is just above the threshold for decaying to KK, so I was expecting some evident effect when the boost of the φ is low (and thus the K's are pretty soft);
- Actually the distribution is more complicated:

