

HERA Perspectives

DESY Program Oriented Funding Meeting, February 26, 2009

Cristinel DIACONU CPP Marseille & DESY

Outline

- Introduction
- HERA Achievements and Goals
- Strategy, organisation and plans
- Conclusions

HERA Experimental Complex

The Detectors

Complex detectors, large international collaborations (~800 physicists)

C.Diaconu, HERA

HERA Program

The Physics at HERA

The proton structure with unprecedented precision Parton distribution functions for the future

р

e[±]

The proton spin surgery Longitudinal and transverse spin measurements

The new physics at the energy frontier

HERA Microscope

Sharpen the output: H1 and ZEUS data combination

Goal: improve HERA output, coherent message from the unique ep collider

The combined HERA I data: towards the global view

Partons in the proton: the power of HERA

Parton Distribution Functions from HERA I data

The power of the coherent data combination is visible Much more to come: HERA II, heavy flavours, jets

HERA and LHC

LHC parton kinematics

HERA data is essential for LHC Final precision in PDF's is mandatory for some areas of LHC physics

Proton's charm and beauty

Young Investigator Group: Heavy Flavours HERA/LHC Katerina Lipka

Present precision: charm 10%, beauty 20%

Goal:

More data, combinations: charm 5% , beauty 15% Include in the final PDF's

Strong coupling

Jet production measurements access the strong coupling

 $\alpha_{\rm s}$ from Jet Cross Sections

At present: 1-2% experimental error 3-4% theoretical error Goal: more data, combination: 0.5% experimental error jet cross sections used for PDF's

Theoretical improvements are also needed

The Proton Spin

Transverse target and beam charge asymmetries in DVCS

Goal: measure the transverse momentum distributions and access the angular momenta

Plans for Final Results from HERA

	Achievement	Milestones		Goals	
Proton Structure	HERAPDF 0.1 2-5%, FL	HERA I (Iow Q2) HERA II (high Q2) 2011	2009 2011	HERAPDF 1%	Final PD
Heavy Flavours	10% charm 20% beauty	Cross sections Combinations	2010 2012	5% charm 15% beauty	F's 20
Jets	Jets Cross sections α_{s} 1%	Cross sections Final Precision (th)	2010 2013	α_{s} 0.5% exp. improved theory	12-2014
Diffraction	DPDF (HERAI) DVCS, Vector Mesons	Full HERA II Combinations	2010 2012	FLD, HERADPDF Exclusive Measurements	
Searches for New Physics	Full HERA Data Explored	Combinations	2009	Publish before LHC	
Proton Spin	Longitudinal spin program, quarks	Tensor charge GPD's and J _q	2012 2013	Angular Momenta Contributions	

Roadmap 2009-2014

- Refine the instrumental precision
 - Exploit the full experimental capabilities (recent detectors)
 - Data reprocessing, improved Monte Carlo simulation
- Plan the publications
 - Taking into account the availabile human ressources
- Combine data and extract the best physics message for the future
 - H1 ZEUS Common working groups
- Preserve data and long term analysis capabilities

2009-2014 Build HERA Heritage

	Final Proce	essing								
	l	ndividua	Il Publicatio	ons						
	Combinations, ultimate precision									
		Dat	a Preserva	tion						
2(009	2010	2011	2012	2013	2014				

Monte Carlo Simulation

MC GRID Production: use LHC infrastructure for high statistics samples HERA among the main users in a few big sites

Person power

Strong commitment from most of the collaborating institutes: DESY contribution 20-30% Postdocs and students are essential for the completion of the physics program

Goal: sustain the necessary collaborative effort

Publications planing in the next years

Planned 2009-2014:

H1: 50 publications ZEUS: 60 publications +10 combined publications

-2009-2012 rate of 15-20 papers /exp./year -a few subjects for 2013-2014

HERMES: 40 papers -transverse spin papers by 2011 -recoil data 2012-2014

Next few years will be very productive at HERA Resources are essential for the publication plan

HERA Data Preservation Plans

HERA data is unique, no follow up experiments All HERA experiments committed to preserve the data analysis capabilities

Study Group for Data Preservation and Long Term Analysis in High Energy Physics Inter-experiment Study Group Large HEP labs and Computing Centers

Workshops in Desy 26-28 Jan. 2009 and SLAC june 2009

produce a blue-print as a reference for further projects and collaborations

Within experiments: prepare data/software for preservation, consultations started

Goal: Long Term Analysis Capabilities

Conclusions and outlook

- HERA is an unique experimental facility:
 - Nucleon structure, precision QCD, electroweak, searches
 - Provides input for LHC physics
- The physics output from the final analyses 2009-2014 is essential:
 - Full detectors performance
 - Full HERA II data
 - Combination and ultimate precision: the HERA heritage
- DESY is the core of this program:
 - Person power: in particular students and postdocs
 - Adequate computing and collaborative facilities
 - Data preservation: secure HERA heritage

The significant investment in HERA program is exploited now

Backup

HERA: an unique collider at the energy frontier

[polarised collisions since mid 70's]

2010

LHC (CERN)

LEP II

200 0

0 NLC

The Harvest from HERA Collider

HERA Results and Visibility

The proton map in the kinematic plane

Use the final state processes (exclusive) for more on QCD, for finer phase space

Comparisons with global fits

Energy frontier tested with full HERA data

Searches for new physics combined H1 and ZEUS data 1 fb⁻¹

Goal: publish the full statistics searches, combined H1 and ZEUS analyses

HERA Exotics Working Group

The V-A nature of the weak currents

Deep-Inelastic Scattering at HERA

Partons = Quarks (+ Gluons = QCD improved quark parton model)

$$Q^2=-q^2=-(k-k^\prime)^2$$

$$x = \frac{Q^2}{2aP}$$

 $y = \frac{Q^2}{xs}$

Boson Virtuality=1/Resolving power

Momentum fraction of the scattered parton (Bjorken Scaling variable)

Inelasticity

$$\tilde{\sigma}_{NC}^{\pm} = \frac{\mathrm{d}^2 \sigma_{NC}^{e^{\pm} p}}{\mathrm{d}x \mathrm{d}Q^2} \frac{xQ^4}{2\pi\alpha^2 Y_+} = \tilde{F}_2 - \frac{y^2}{Y_+} \tilde{F}_L \mp \frac{Y_-}{Y_+} x \tilde{F}_3, \quad Y_{\pm} = 1 \pm (1-y)^2$$

Predictions for LHC, some examples

Various fits give incompatible results PDF error dominant for some standard signals The variations in the P_T spectra due to PDF's can be limiting factor for non-resonant searches More precise data for PDF's is the best medicine

Hard Diffraction at HERA

10% of DIS events are diffractive: produced via the exchange of an coulouless exchange

HERA inclusive diffraction

Photo-Produced Beauty

Recent precise H1 measurements in agreement with theory

The proton structure function F_L

F_L averaged in each Q² bin

Work ongoing to extend to lower Q²/x: test QCD, resummation, gluon

Comparison with target data and indirect determinations

Data processing for ultimate precision

