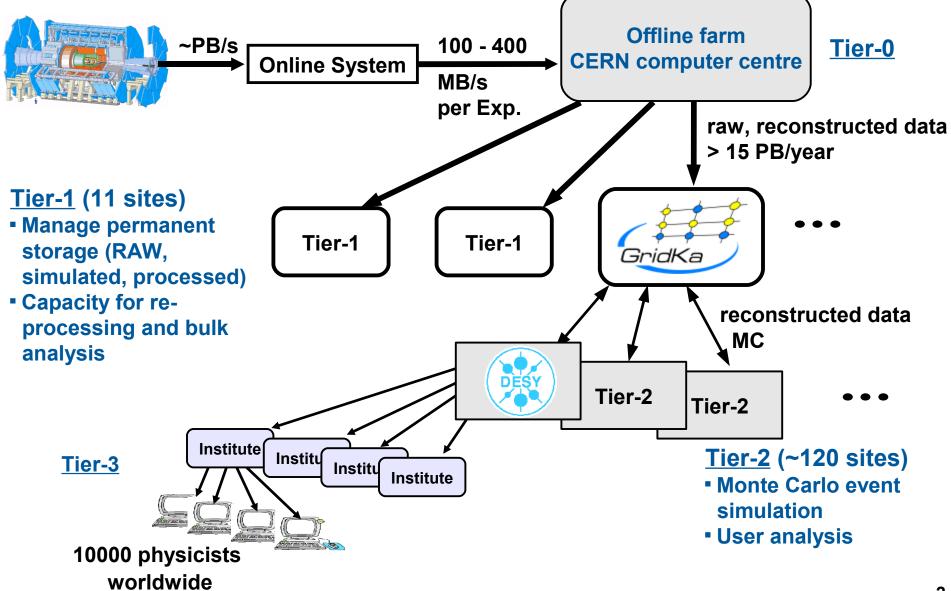


1


Large scale computing facilities at KIT and DESY

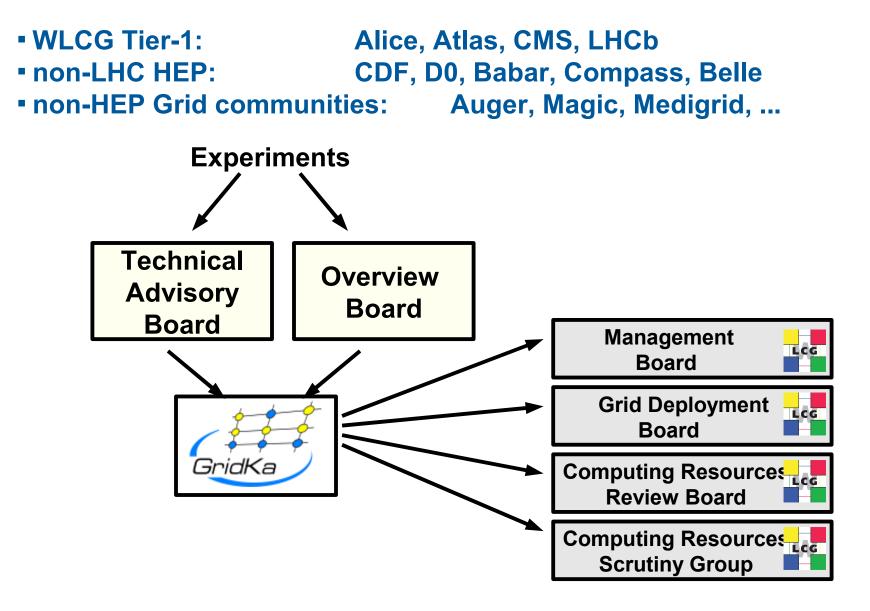
The Worldwide LHC Computing Grid (WLCG)

The Memorandum of Understanding (MoU) of the Worldwide LHC Computing Grid

- Members, aims and organisation of the WLCG collaboration
- Tier-1 and Tier-2 centres
 - <u>Pledged resources</u> (CPU, disk, tape)
 - Service levels
 - 24h x 7d operation
 - Response time on operational problems
 - Availability (≥ 98% for Tier-1 centres)
- Supported LHC experiments
 - GridKa supports <u>all</u> LHC experiments
 - DESY supports Atlas, CMS, LHCb

Tier-2 centres in Germany

3 average size Tier-2s for Atlas, 1.5 for CMS, 1 for LHCb and 1 for Alice have been requested for Germany.


- **DESY operates 1 average size Tier-2 each for:**
- Atlas (federated with U Göttingen)
- CMS (federated with RWTH Aachen)
- LHCb

Other Tier-2 centres

- U Freiburg, U Wuppertal, LMU and MPIfP Munich: 0.5 av. Tier-2 for Atlas each.
- RWTH Aachen: 0.5 av. Tier-2 for CMS
- (GSI: 1 av. Tier-2 for Alice)

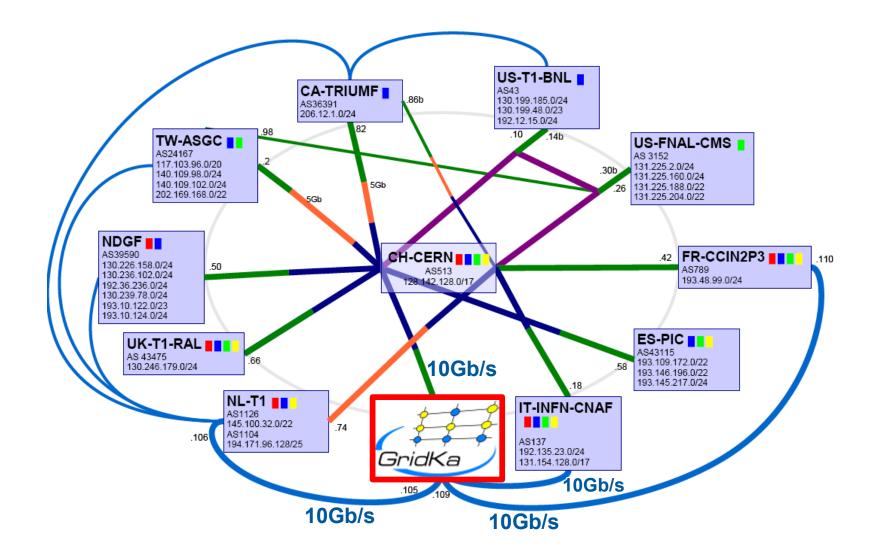
GridKa (project duration 2002 - 2022+)

DESY

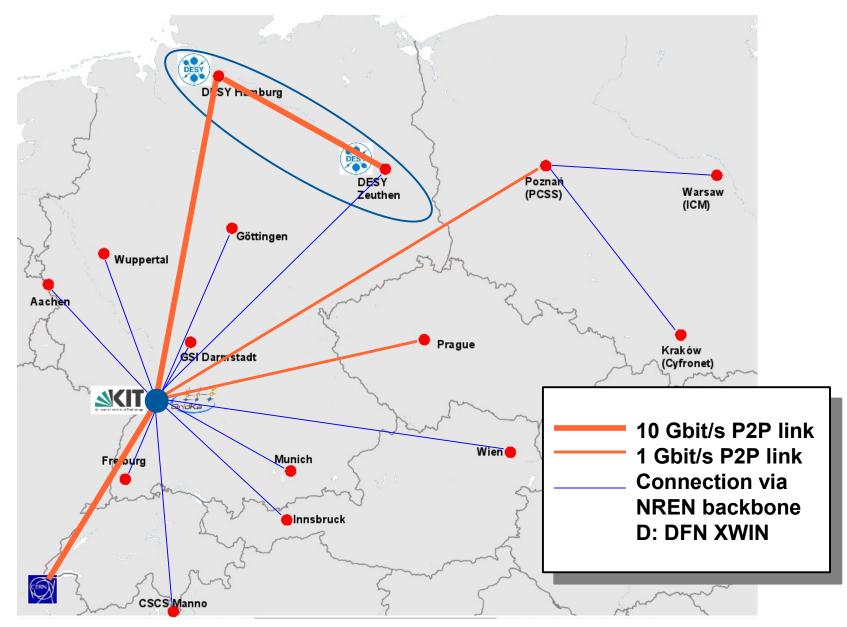
- WLCG Tier-2:
- non-LHC HEP:

Atlas, CMS, LHCb H1, Zeus, ILC, CALICE, ILDG

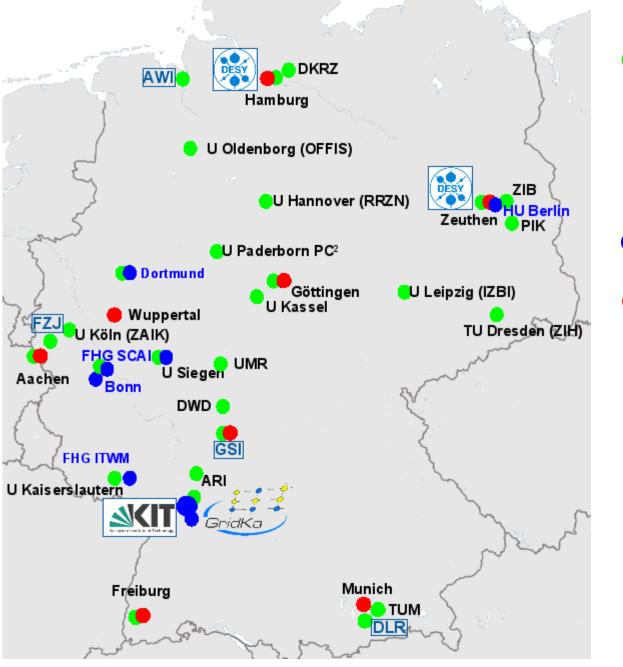
• non-HEP Grid communities:


IceCube, XFEL, XRAY, Biomed, ...

Example: Monte Carlo production for ILC detector design


- development of grid tools (job submission scripts, web based production database)
- >50 M events fully simulated (geant4) and reconstructed Standard Model 'background' and new physics (Higgs/SUSY)
- ~70 TByte of storage at DESY Grid ('T0')
- ~200 CPU-years

DESY and other EU Grid sites (UK, F, ...)


LHC Optical Private Network (OPN) Status

GridKa Tier-1 and associated Tier-2 sites

High visibility in national and international Grid projects

- Sites of the German national grid initiative D-Grid, funded by BMBF with Helmholtz sites as key players.
- EGEE site (non Tier-2)
- WLCG Tier-2 site (also EGEE)

Helmholtz Alliance 'Physics at the Terascale'

	Physics Analysis	Grid Computing	Detector Science	Accelerator Science			
c Goals	Data Analysis • Understanding LHC Detectors • Physics at the LHC • The path to the ILC Analysis Tools	Improved Grid • Virtualization • Application-driven monitoring • Development of NAF tools	ILC Detectors • Vertex Detector • Tracking • Calorimetry • Forward Detectors	Optimizing the ILC • Acceleration Technology • Sources • Beam Dynamics			
Scientific	Algorithms and Techniques Simulation Tools Theory/Phenomenology Monte Carlo Generators Precise Predictions New Models	Data Storage + Retrieval • Mass storage • Data Access	(s)LHC Detectors • Vertex Detectors • Tracking • Trigger • Luminosity Monitor				
S	Analysis Network • Alliance Working Groups • Monte Carlo Group • Virtual Theory Institute	Virtual Computing Centre • Tier 2 • National Analysis Facility • High performance network	Virtual Detector Lab • VLSI & Electronics • Support Sensor Design & Characterization • Detectors Systems Support	Advancing Accelerator Science			
rk Packages	Analysis Centre at DESY	R&D on Grid Tools: • Mass storage • Collaborative & Interactive tools • User friendliness	R&D Projects	R&D Projects			
Work	Training and Exchange	Grid Training					

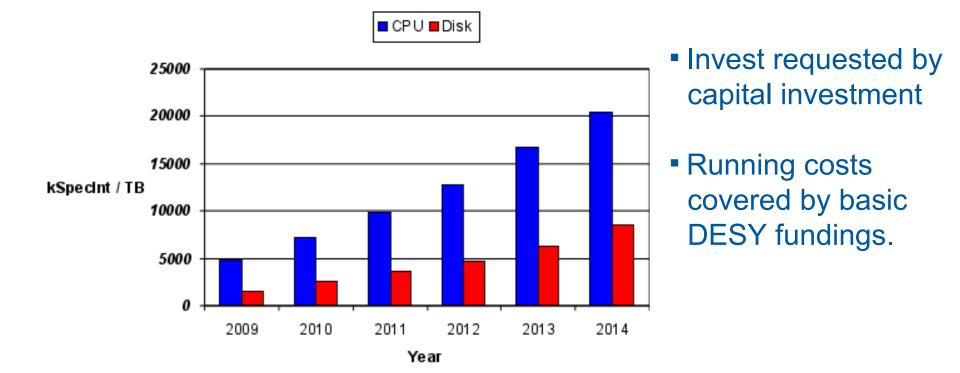
Backbone Activities

Management - Young Investigator Groups - Fellowships - Equal Opportunities - Outreach - Interim Professorships

10

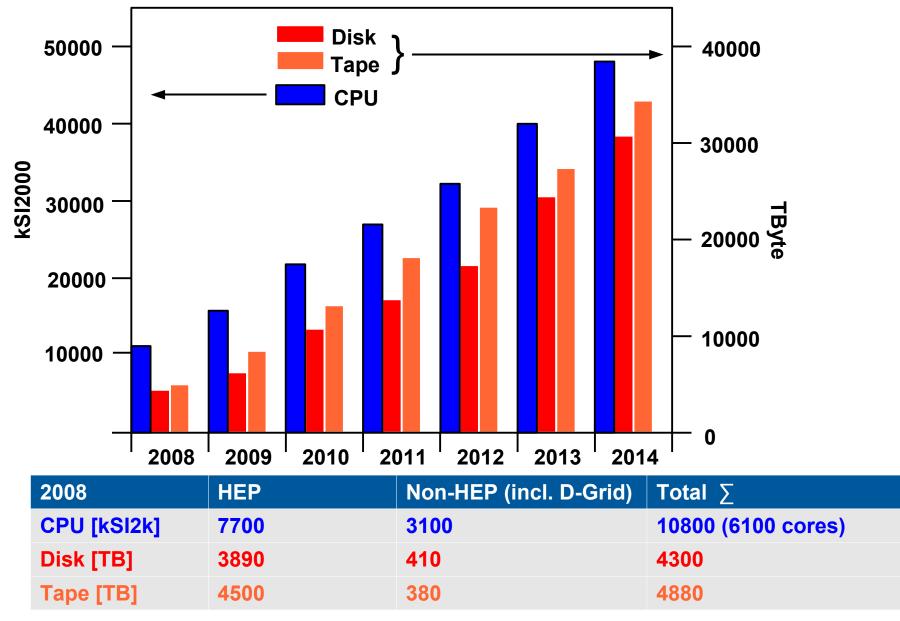
Helmholtz Alliance 'Physics at the Terascale'

	Physics Analysis	Grid Computing		ector Science	Accelerator Science			
	Data Analysis • Understanding LHC Detectors • Physics at the LHC • The path to the ILC	Improved Grid • Virtualization • Application-driven monitoring • Development of NAF tools	ILC Det • Vertex D • Tracking • Calorime • Forward	Detector	Optimizing the ILC • Acceleration Technology • Sources • Beam Dynamics			
	Theory/Phenomeno Monte Carlo Generators Precise Predictions	r tual Computing (er 2 ational Analysis Facilit igh performance netwo	y	Detectors retectors ity Monitor				
	Virtual Theory Institute M Analysis Centre at I	D on Grid Tools: ass storage ollaborative & Interacti ser friendliness		Detector Lab Electronics Sensor Design & erization is Systems Support	Advancing Accelerator Science			
	Training and Excha	id Training		ojects	R&D Projects			
Γ		Backbong	- A cotility	tion				

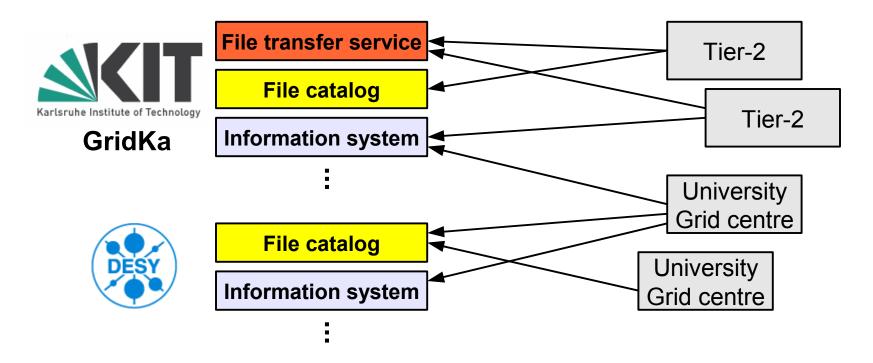

Backbone Activities

Management - Young Investigator Groups - Fellowships - Equal Opportunities - Outreach - Interim Professorships

The National Analysis Facility (NAF)

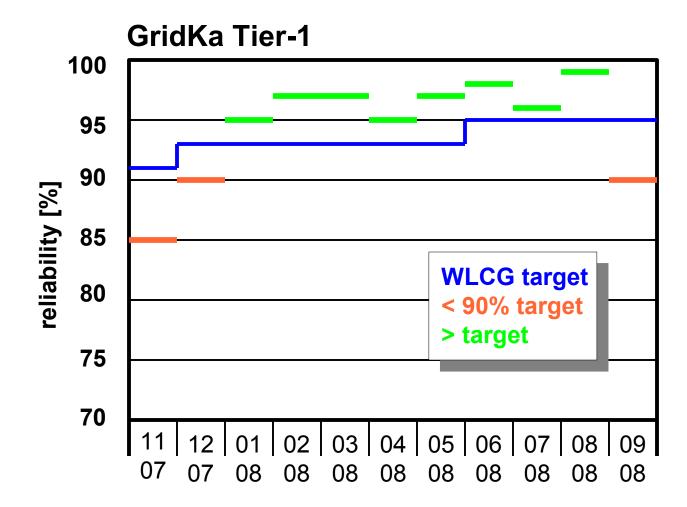

- Computing infrastructure for the Helmholtz Alliance Analysis Centre
- Built according to requirements from German Atlas, CMS and LHCb groups.
- Accessible by German research groups for LHC, Hera, Theory and ILC tasks to increase competitiveness.
- Size of ~1.5 average Tier-2 centres with additional storage
- Interactive analysis to improve scientific harvest
- Provides interactive PROOF farm request by physics groups
- $\hfill \label{eq:locality}$ Locality of analysis data is required \rightarrow core facility at DESY
 - .. intended to be distributed.
- Initial investment provided by BMBF.

DESY storage and computing resources



2008	Grid Hamburg (Tier-2, NAF, other HEP)	Grid Zeuthen (Tier-2, NAF, other HEP)	NAF non-Grid (batch/interactive)
CPU [kSl2k]	3000 (2000 cores)	700 (500 cores)	1200 (868 cores)
Disk [TB]	1350	460	

GridKa storage and computing resources



Fundamental Grid services provided for the whole HEP community

- Used by Tier-2 and university Grid centres
- LHC Computing in Germany and Europe depends on regional core services
- Highest reliability necessary

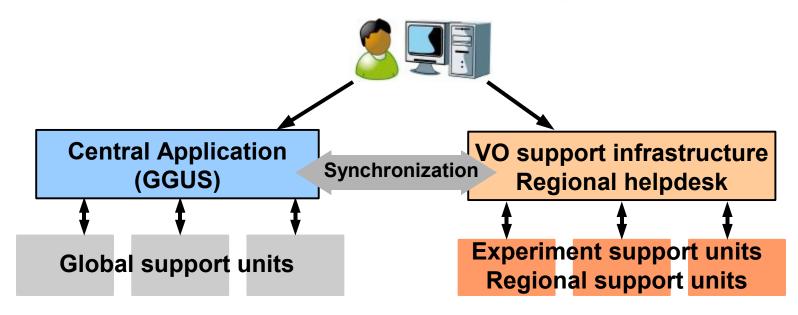
Service reliability measured by WLCG

Service reliability measured by WLCG

DESY Atlas and CMS Tier-2

		Oct-Dec 08					
DE-DESY-ATLAS-T2 (Germany ATLAS Federation, DESY)							
DESY-HH	2,018	97 %	97 %	97 %	94 %	98 %	
DESY-ZN	450	100 %	100 %	100 %	98 %	100 %	
DE-DESY-RWTH-CMS-T2 (Germany, CMS Federation)							
DESY-HH	2,018	97 %	97 %	97 %	94 %	98 %	
DESY-ZN	450	100 %	100 %	100 %	98 %	100 %	
RWTH-Aachen	2,024	86 %	86 %	77 %	90 %	95 %	

 \rightarrow Excellent service quality by provided Helmholtz centres


Major development contributions

dCache mass storage system

- Developed in collaboration between DESY, Fermilab, and the Nordic Data Grid Facility (NDGF)
- Close collaboration with GridKa (large dCache installation, testing)
- dCache will hold the largest share of LHC data outside CERN
- dCache is distributed by EGEE gLite and US Open Science Grid Virtual data tool (VDT)
- dCache is in production at 8 WLCG Tier-1 sites and ~40 Tier-2s
 - \rightarrow High support effort
 - DESY (international and national)
 - Helmholtz-Alliance 'Physics at the Terascale' (national)
 - D-Grid (national)

Major development contributions Global Grid User Support (GGUS)

- Central Grid helpdesk system developed at KIT for EGEE
- Adapted and extended to WLCG/HEP specific needs
- Single point of entry for all trouble tickets
- 59 support units
- ~1000 supporters on 5 continents
- 10 regional helpdesks connected and <u>synchronized</u>
- ~8000 tickets processed last year

Education and training activities

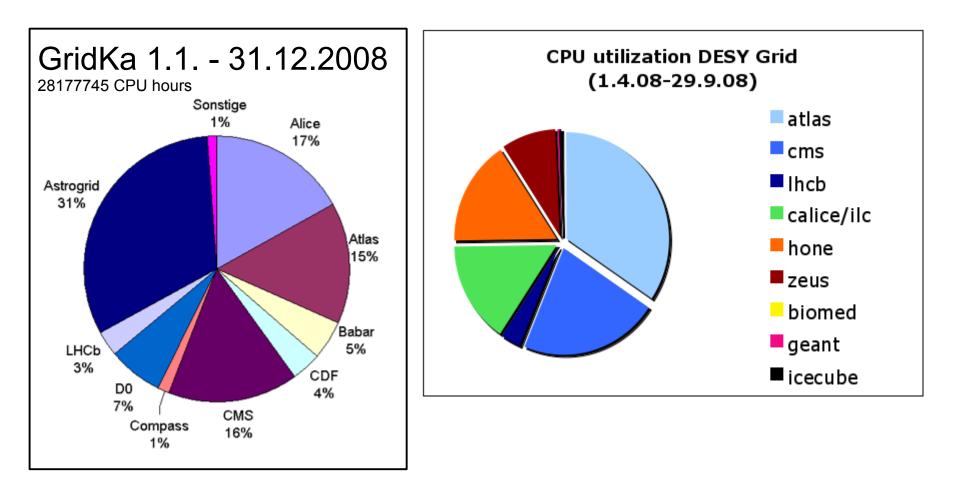
GridKa school

- 2003: 30 students
- 2008 in cooperation with the Helmholtz Alliance
- 2008: 170 participants (14 countries) from science and industry
- Highly visible, international event

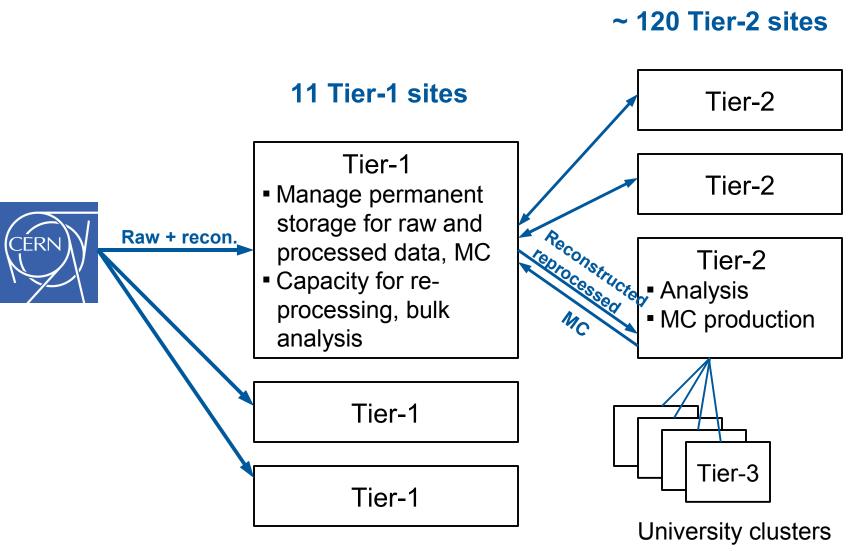
dCache trainings

 strong involvement of DESY dCache experts and support people of the Helmholtz Alliance (KIT, LMU Munich, RWTH Aachen)

Summary

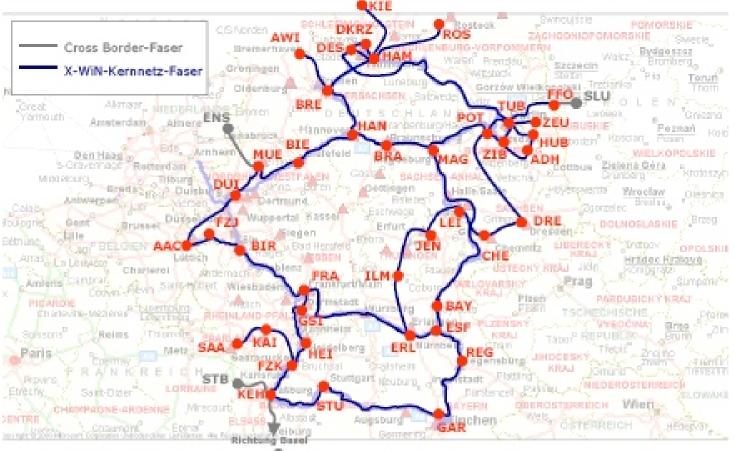

- The Helmholtz-Centres KIT and DESY build-up and operate large scale computing facilites which are crucial for elementary particle physics research in Germany and Europe.
- Support of Tier-2 centres and universities with Grid services and know-how.
- The NAF is a key element for the data analysis at the universities.
- Important contributions to Grid development and training activities.

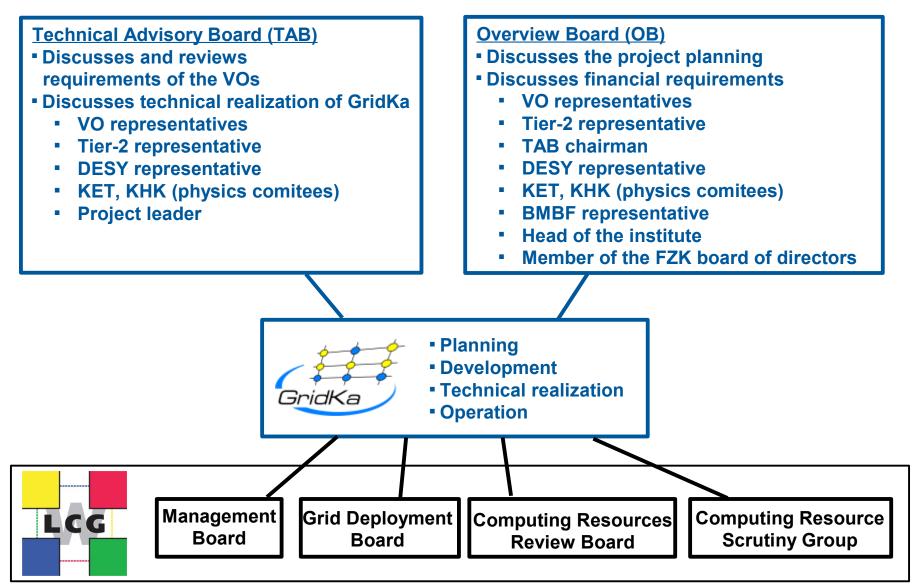
Challenges


- Immense increase of computing resources necessary during the coming years to fulfil the requirement of LHC data processing.
- Providing services with high level of quality and reliability.
- Support universities in Grid computing for particle physics.
 - application / middleware support
 - education and training
- Continue dCache / GGUS development, international support.
- Long term data preservation.
 - LHC raw data: end of LHC + min. 10 years
- Continue to support new communities on the Grid.

Backup Slides

CPU utilization of GridKa and DESY Grid


The LHC computing model


German Science Network XWIN

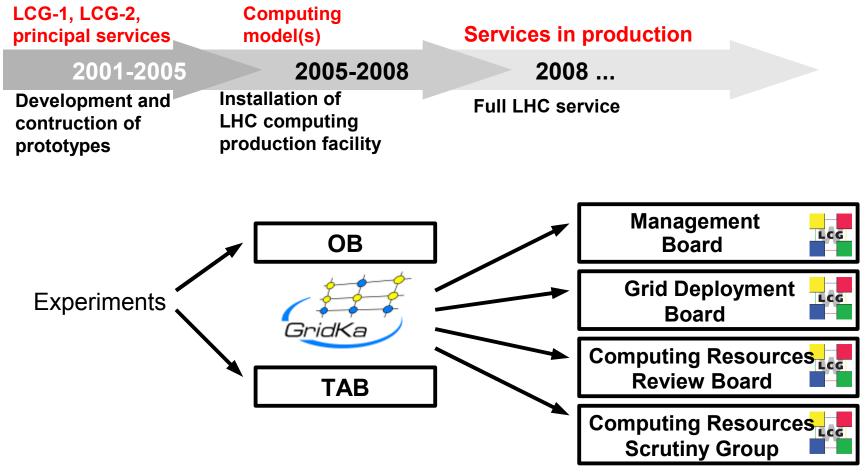
X-WiN: Topologie (Glasfasern)

GridKa project organization

Fundamental Grid services provided by FZK and DESY for the whole HEP community

Service	FZK/GridKa	DESY
Compute elements (CE)	X	X
Information systems (BDII)	X	X
Workload management systems (WMS)	X	X
File catalogs (LFC)	X	X
File transfer service (FTS)	X	
Storage elements (SE)	Х	X
VO management (VOMS)	X	X
VO specific services (VOBox)	X	X

Very high reliability required for central (regional) services!


Service reliability measured by WLCG / EGEE

GridKa Tier-1

Milestone		ASGC	CC IN2P3	CERN	DE- Kit	INFN CNAF	NDGF	PIC	RAL	SARA Nikhef	BNL	FNAL
Tier-1 Sites Reliability - June 2008												
Tier-1 Sites Reliability above 95% Considering each Tier-0 and Tier-1 site	Jan 93%					70	92		92	57	91	
	Feb 93%					20	84			84	67	85
	Mar 93%					86		88			80	
	Apr 93%					76	84			90		92
	May 93%					88						
	June 95%					86						93
								un 2008 ay 98				
Tier-1 Sites Reliability - Dec 2008												
Tier-1 Sites Reliability above 97%	Jul 95%		94			79	88			91		
Considering each Tier-0 and Tier-1 site	Aug 95%						43					

GridKa

- Requirement by LHC and other international particle physics experiments
- Project proposed and started 2001
- Project planning oriented at the 3 phases (W)LCG timeline

