AMC - DESY # **SPECIFICATION** Advanced Mezzanine Card AMC.1 Extension MSK Group February 2009 Version 2.0 Please send comments to Tomasz.Jezynski@desy.de MSK Deutches Elektronen-Synchrotron, Notkestr. 85 22607 Hamburg Germany # **Revision History** | Date | revison | Change | Signature | |------------|---------|--|-----------------| | 24.02.2009 | 2.0 | Created - based on 1.3 version | Tomasz Jezynski | | | | Changes in the requirements and pin assignment | | | | | Removed DSP connection | #### 1. Introduction At DESY a Low Level RF Control System is under development for FLASH and the proposed XFEL accelerator complex system. As one of the electronic standards for this control system the Advanced Telecommunications Computing Architecture (AdnancedTCA or ATCA) is under consideration. AdvancedTCA incorporates the latest trends in high speed and low latency interconnection technologies, and improved reliability, availability and serviceability. The Advanced Mezzanine Card (AMC) base specification 1 and its a subsidiary specification AMC. 1 define the base-level requirements for a wide range of high speed mezzanine cards optimized for but not limited to AdvancedTCA Carriers 3 and μ TCA. For the low level RF system it is required to avoid front panel connections, what means that all specific signals for the LLRF system must be available on edge connectors of the AMC card. The consequence of mentioned above requirement is need to modify classical AMC connector, but it must be still possible to connect a standard AMC module to modified connector. ## 2. Description The AMC-DESY connector is used to transfer all signals to the AMC module which are described in the AMC.1 specification. In addition it is specified to transfer: - 1. specific analog signals characteristic for LLRF systems to and from the AMC bay, like the probe signal representing the accelerating field in the cavity, the RF reference signal of the master oscillator and the vector modulator (VM) output signal driving the high power klystron, - 2. digital signals such as clock signals for the ADCs as well as trigger signals, - 3. multi bit data with high speed and low latency between the AMC module and the carrier board in parallel to the standard PCIExpress link - 4. data between FPGAs and DSPs located on AMC modules and a carrier cards or vice versa. # 3. Requirements The following signals, in addition to signals defined win AMC1. spec, must be available for AMC modules: • 10 lines for analog signals of up to 1.3GHz and 0dBm (8 x probe signals, 1 x RF reference signals, 1 x RFout ¹ Reference to PICMG AMC base specification ² Reference to AMC.1 specifications ³ Reference to ATCA Specification PICMG 3.0 - 1 x differential line for coded clock signals (2.6 GHz, 0dBm) - 3 x clock signals, differential LVDS, bus - 3x trigger signals, differential LVDS bus - 10 x lines for low latency protocol, up to 3.5Gbps for a DSP TigerSHARC (according to Analog Device spec). The AMC connector must support DESY modules, made according to that specification, as well as the standard AMC modules full and half high size. A mechanical problem must ## 4. Specification Specification presented below covers following aspects: - signals description - connector type - pin assignments - mechanical construction of AMC module #### 4.1 Signals description #### **Common issues:** Isolation: RF reference (1300MHz) and LO at IF < 50 dBm RF crosstalk: better than -45 dB between any two RF channels Operating temperature range: -10 deg. C to +70 deg. C Humidity: max 95 % none condensing #### **Analog signals** - 10 x differential line, 100 Ohm, dedicated for probe signals 10MHz 1.3 GHz, 0dBm 8 lines devoted to probe signal, or forward or reflected powe 2 line for monitoring or spare - 1 x RF reference, differential lines 100 Ohm 1.3 GHz, 0dBm - 2 x RF output, differentia line, 100 Ohm 1.3 GHz, 0dBm, *alternative usage*: any other RF signal #### **Digital signals** - 3 x clock, frequency 100 kHz -100 MHz, LVDS bus, stability 5 ps rms - 3 x trigger, frequency 1Hz -100 MHz, LVDS bus, stability 500 ps rms - 1 x coded clock, differential line, 100 Ohm, 0dBm, *alternative usage*: second RF reference - 10 x differential line for low latency protocol, LVDS, 100 Ohm, up to 3.5Gbps.5Gbps - line for DSP link (according to Analog Device spec) - o 4 x LVDS line for data transferred from AMC module - o 4 x LVDS line for data transferred to AMC module - o 2 x LVDS line for clock - o 4 x single-ended LVCMOS (2.5V) for handshake #### **4.2** Connector type The A+B+ connector has been chosen for an AMC-DESY slot. Its B+ part fulfils the AMC.1 specification, while the A+ part of the connector is deviating from the AMC.1 standard and can only be used for signals required to operate the FLASH/XFEL-LLRF system. The A+B+ connector is shown in Figure 1a, and in Figure 1b the B+ connector is shown. Both presented connectors support the full high AMC module. Fig. 1a. The standard A+B+ connector and its usage in LLRF system Fig. 1b. The standard B+ connector The CN074-340-0001 connector from Yamaichi has been chosen. The CN074 series connectors are designed for use with high-speed interfaces up to 12.5 Gbit/s and all connectors from these series are designed for $100 \Omega \pm 10 \Omega$ controlled impedance. Its outline dimension is shown in Figure 2 and PCB layout is shown in Figure 3. In this type connector there are only mounting holes. Particular pins of the CN074 are connected directly to pads on PCB (see Figure 3) Fig. 2. Outline Connector Dimensions CN074-340-0001 Fig. 3. PCB Layout CN074-340-0001 ## 4.3 Pin assignment Signals distribution on A+B+ connector is shown in Figure 3 and description is given in Table 1. Fig. 4 Signals on the AMC-DESY connector (lower row) <u>Ano, Apo-Ano, Ano</u> – inputs (negative and positive), analog signals IF or 1.3GHz, point-to-point Z3 <u>1.3GHz+, 1.3GHz-</u>: RF reference, 1.3 GHz, spare, point-to-point (spliter) Z3 <u>81MHz+, 81MHz-</u>: RF reference, 81 MHz, spare, point-to-point (spliter) Z3 <u>RF_on1,RF_op1</u> – RF 1.3GHz output, point-to-point Z3 $\underline{RF_o}\underline{n2,RF_o}\underline{p2}$ – RF 1.3GHz output, spare, point-topoint Z3, alternative use possible <u>Cn1,Cp1 - Cn3,Cp3</u> - clock signals, LVDS bus <u>Tn1,Tp1 - Tn1,Tp1</u> - trigger signals, LVDS bus <u>Pn0, Pp0 - Pn9, Pp9</u> - own protocol, point-topoint, connected directly to the main FPGA on the carrier board Pairs Pn8,Pn8 and Pn9,Pp9 are dedicated for clock signals <u>Int1-Int4</u> – interlock signals | Bottom | | Тор | | |---------|-------------|---------|-------------| | Pin No. | Description | Pin No. | Description | | 1 | GND | 170 | GND | | 2 | Pp9 | 169 | Pp8 | | 3 | Pn9 | 168 | Pn8 | | 4 | GND | 167 | GND | | 5 | Pp7 | 166 | Pp6 | | 6 | Pn7 | 165 | Pn6 | | 7 | GND | 164 | GND | | 8 | Pp5 | 163 | Pp4 | | 9 | Pn5 | 162 | Pn4 | | 10 | GND | 161 | GND | | 11 | Pp3 | 160 | Pp2 | | 12 | Pn3 | 159 | Pn2 | | 13 | GND | 158 | GND | | 14 | Pp1 | 157 | Pp0 | | 15 | Pn1 | 156 | Pn0 | | 16 | GND | 155 | GND | | 17 | Cp3 | 154 | Tp3 | | 18 | Cn3 | 153 | TN3 | | 19 | GND | 152 | GND | | 20 | Cp2 | 151 | Tp2 | | 21 | Cn2 | 150 | TN2 | | 22 | GND | 149 | GND | | 23 | Cp1 | 148 | Tp1 | | 24 | Cn1 | 147 | Tn1 | |--|--|---|---| | 25 | GND | 146 | GND | | 26 | GND | 145 | GND | | 27 | GND | 144 | GND | | 28 | GND | 143 | GND | | 29 | GND | 143 | GND | | 30 | GND | 141 | GND | | 31 | GND | 141 | GND | | 32 | GND | 139 | GND | | 33 | GND | 139 | | | | | | GND | | 34 | GND | 137 | GND | | 35 | GND | 136 | GND | | 36 | GND | 135 | GND | | 37 | GND | 134 | GND | | 38 | GND | 133 | GND | | 39 | GND | 132 | GND | | 40 | GND | 131 | GND | | 41 | GND | 130 | GND | | 42 | GND | 129 | GND | | 43 | GND | 128 | GND | | 44 | Int2 | 127 | Int4 | | 45 | Int1 | 126 | Int3 | | 46 | GND | 125 | GND | | 47 | * RFop0 | 124 | * RFop1 | | 48 | * RFon0 | 123 | * RFon1 | | 49 | GND | 122 | GND | | 50 | GND (Opp11) | 121 | GND (Opp12) | | 51 | GND (Opn11) | 120 | GND (Opn12) | | | | 120 | OND (Opiniz) | | 52 | GND | 119 | GND | | 52
53 | | | GND
* 81MHz+ | | 52 | GND | 119 | GND | | 52
53 | GND
* 1.3GHz+ | 119
118 | GND * 81MHz+ * 81MHz- GND | | 52
53
54
55
56 | GND
* 1.3GHz+
* 1.3GHz- | 119
118
117 | GND * 81MHz+ * 81MHz- GND | | 52
53
54
55 | (SND) * 1.3GHz+ * 1.3GHz- (SND) | 119
118
117
116 | GND
* 81MHz+
* 81MHz- | | 52
53
54
55
56 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) | 119
118
117
116
115 | GND * 81MHz+ * 81MHz- GND GND (Opp10) | | 52
53
54
55
56
57 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opn9) | 119
118
117
116
115
114 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) | | 52
53
54
55
56
57
58 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opn9) GND (Opn9) | 119
118
117
116
115
114
113 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND | | 52
53
54
55
56
57
58
59 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opn9) GND Ap9 | 119
118
117
116
115
114
113
112 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 | | 52
53
54
55
56
57
58
59
60 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opn9) GND Ap9 An9 | 119
118
117
116
115
114
113
112
111 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) | | 52
53
54
55
56
57
58
59
60
61 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND | 119
118
117
116
115
114
113
112
111
110 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) | | 52
53
54
55
56
57
58
59
60
61
62 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND GND GND GND GND GND GN | 119
118
117
116
115
114
113
112
111
110
109 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND | | 52
53
54
55
56
57
58
59
60
61
62
63
64 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opn9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) | 119
118
117
116
115
114
113
112
111
110
109
108 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opn9) GND Ap9 An9 GND GND GND GND GND GND GND GN | 119
118
117
116
115
114
113
112
111
110
109
108
107
106 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 | 119
118
117
116
115
114
113
112
111
110
109
108
107 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 GND | 119
118
117
116
115
114
113
112
111
110
109
108
107
106
105 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opp10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opn9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND (Opn7) GND (Opn7) GND Ap7 An7 GND GND (Opp5) | 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opp10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND GND (Opp6) | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opn9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 GND GND (Opp5) GND (Opp5) | 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND GND (Opp6) GND (Opp6) | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 GND GND GND (Opp5) GND (Opp5) GND (Opp5) | 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND GND (Opp6) GND (Opp6) GND (Opn6) | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 GND GND GND (Opp5) GND (Opp5) GND (Opp5) GND Ap5 | 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND GND GND GND GND GND GND GND Ap6 An6 GND GND GND GND Ap6 An6 GND GND Ap7 Ap8 An8 An8 GND Ap8 An8 An8 GND Ap7 Ap8 An8 An8 GND Ap7 Ap8 An8 An8 GND Ap7 Ap8 An8 An8 An8 An8 GND Ap7 Ap8 An6 GND GND GND GND Ap4 Ap4 | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 GND GND GND GND (Opp5) GND (Opp5) GND Ap5 An5 | 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 GND GND GND GND GND GND GND GN | 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 GND GND (Opp5) | 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND GND (Opp6) GND (Opp6) GND (Opp6) GND (Opp6) GND (Opp6) GND (Opp6) GND Ap4 An4 GND GND (Opp4) | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 GND GND (Opp5) GND (Opp5) GND (Opp5) GND (Opp5) GND (Opp5) GND (Opp3) GND (Opp3) GND (Opp3) | 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 97 96 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND GND (Opp6) | | 52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74 | GND * 1.3GHz+ * 1.3GHz- GND GND (Opp9) GND (Opp9) GND Ap9 An9 GND GND (Opp7) GND (Opp7) GND (Opp7) GND Ap7 An7 GND GND (Opp5) | 119 118 117 116 115 114 113 112 111 110 109 108 107 106 105 104 103 102 101 100 99 98 | GND * 81MHz+ * 81MHz- GND GND (Opp10) GND (Opp10) GND (Opn10) GND Ap8 An8 GND GND (Opp8) GND (Opp8) GND (Opp8) GND (Opn8) GND Ap6 An6 GND GND (Opp6) GND (Opp6) GND (Opp6) GND (Opp6) GND (Opp6) GND (Opp6) GND Ap4 An4 GND GND (Opp4) | | 78 | An3 | 93 | An2 | |----|------------|----|------------| | 79 | GND | 92 | GND | | 80 | GND (Opp1) | 91 | GND (Opp2) | | 81 | GND (Opn1) | 90 | GND (Opn2) | | 82 | GND | 89 | GND | | 83 | Ap1 | 88 | Ap0 | | 84 | An1 | 87 | Ap0 | | 85 | GND | 86 | GND | Table 1. Assignment of pins in A+B+ connector – part A+ only. ### 4.4 Mechanical construction of the AMC module The standard, full high AMC module plugged to the AMC bay equipped with A+B+ connector is shown in 5. The same module can be connected to the AMC bay equipped with the B+ connector (only upper row of the A+B+ connector) Fig. 5 Standard AMC full high module in AMC-DESY bay Figure 6 shows the AMC DESY module connected to the A+B+ connector. The AMC DESY module consists of two boards – the main board and signal conditioning board. The main board is connected to the B+ (upper row) part of the A+B+ connector, while the signal conditioning board is connected to the A+ (lower row) part of the A+B+ connector. Fig. 6. Constriction of the AMC DESY module. Characteristic signals for LLRF system are provided to main board through the signal conditioning board and stacked connectors. Two connectors are used to reinforce the module mechanically, and in some cases increase isolation between signals (e.g. one connector may be devoted to analog signals, another one to digital signals). Required distance between boards is 13.5 mm. There is strong suggestion that all AMC boards, development at DESY should use the same type of connectors. Presented solution allows to connect to the carrier board any standard AMC.1 module, full high or half high, and special AMC-DESY module. Figure 7a shows the carrier board equipped with A+B+ connector and the AMC-DESY module plugged into the AMC bay. Figures 7b shows the same carrier board but half high module is plugged to the AMC-DESY bay. Fig. 7a DESY AMC module connected to ACM-DESY slot. Fig. 7b. Standard AMC half high module in the AMC-DESY bay Component profile for AMC-DESY module Fig. 8. Component profile for AMC-DESY module. ### 4. Conclusion A specialized AMC-DESY connector has been introduced. The first AMC card for the FLASH/XFEL LLRF control system, which fits this connector, is under construction as well as the appropriate ATCA carrier board designed to test its performance. ### 5. AMC-DESY Extension It is possible to increase number of the point to point connections between ZONE3 and AMC connectors up to 22 channels per connector. These signals can be used as analog inputs or outputs. For this purpose, grounded signal pins (see Table.1) can be used. Optional pins are signed Op1 up Op12.