Decay Rate of the Electroweak Vacuum in the Standard Model and Beyond by SC, Takeo Moroi, and Yutaro Shoji

So Chigusa

Department of Physics, University of Tokyo

May 24 Planck 2018 @ Bonn

PRL **119** (2017) no.21, 211801 [arXiv:1707.09301] PRD ??? [arXiv:1803.03902]

◆□▶ ◆□▶ ◆目▶ ◆目▶ ◆□▶ ◆□

Implication of the SM Higgs with $m_h \simeq 125$ GeV: EW vacuum is NOT absolutely stable in the SM!!

- Many works on the decay rate. ['01 Isidori, Ridolfi, and Strumia, etc...]
- Effects of conformal zero-modes were not properly calculated.

Purpose: Complete NLO calculation of the decay rate

Introduction		Result	Conclusion
Outline			

- **2** Brief review of the calculation
- 3 Effects of zero-modes

Review NLO formula of the decay rate • O(4) symmetric solution of EoM Using the bounce $\bar{\phi}$ • $\overline{\phi}(\infty) = v$: false vacuum The decay rate per unit volume @ NLO ['77 Coleman] $\gamma = \frac{1}{VT} \operatorname{Im} \frac{\int_{1-\text{bounce}} \mathcal{D}\Psi \ e^{-S_E}}{\int_{0} \operatorname{bounce}} \mathcal{D}\Psi \ e^{-S_E}} \equiv A e^{-\mathcal{B}} \quad \text{with} \quad \mathcal{B} \equiv S_E[\bar{\phi}] - S_E[v],$ Expand the action around the bounce $S_E[\bar{\phi} + \Psi] = S_E[\bar{\phi}] + \frac{1}{2} \int d^4x \ \Psi \mathcal{M} \Psi + \mathcal{O}(\Psi^3)$ $S_E[v+\Psi] = S_E[v] + \frac{1}{2} \int d^4x \ \Psi \widehat{\mathcal{M}} \Psi + \mathcal{O}(\Psi^3)$

$$\Rightarrow \quad A = \frac{1}{VT} \left| \frac{\text{Det } \mathcal{M}}{\text{Det } \widehat{\mathcal{M}}} \right|^{-\frac{1}{2}} \quad \text{if } \mathcal{M}f = 0 \text{ for } \exists f, \\ \text{then Det } \mathcal{M}^{\epsilon} \equiv 0 \text{ and } A^{\epsilon} \to \infty^{\epsilon} \quad \exists s \to \infty^{\epsilon} \\ \frac{4}{13}$$

Introduction Review Zero-mode Result Conclusion

EW vacuum of the standard model

Interested in the scale $\langle \Phi \rangle \sim \mu \gtrsim 10^{10} \text{ GeV}; V(\Phi) \simeq -|\lambda| (\Phi^{\dagger} \Phi)^2$ $\langle \Phi \rangle \gg m_{\text{EW}} \text{ approximation}$

Bounce solution

$$\Phi_{\text{Bounce}} = \frac{1}{\sqrt{2}} e^{i\theta^a \sigma^a} \begin{pmatrix} 0\\ \bar{\phi} \end{pmatrix} \text{ with } \begin{cases} \bar{\phi}(r) \equiv \frac{\bar{\phi}_C}{1 + \frac{1}{8}|\lambda|\bar{\phi}_C^2 r^2} \\ \lim_{r \to \infty} \bar{\phi}(r) = 0: \text{ FV} \end{cases}$$

Bounce action for the SM

$$\mathcal{B} = \frac{8\pi^2}{3|\lambda|}$$

2 free parameters θ^a , $\overline{\phi}_C$ correspond to zero-modes

Introduction Review Zero-mode Result Conclusion
The Higgs fluctuation h

Expansion around the bounce

$$\Phi = \frac{1}{\sqrt{2}} e^{i\theta^a \sigma^a} \begin{pmatrix} \phi^1 + i\phi^2 \\ \bar{\phi} + h - i\phi^3 \end{pmatrix}, \quad W^a_\mu = w^a_\mu, \quad B^a_\mu = b^a_\mu$$

Fluctuation operator for the Higgs mode

$$\mathcal{L} \ni \frac{1}{2}h(-\partial^2 - 3|\lambda|\bar{\phi}^2)h \equiv \frac{1}{2}h\mathcal{M}^{(h)}h, \quad \widehat{\mathcal{M}}^{(h)} \equiv -\partial^2$$

Angular momentum expansion of the Higgs mode

$$\mathcal{M}_J^{(h)} = -\left[\partial_r^2 + \frac{3}{r}\partial_r - \frac{4J(J+1)}{r^2} + 3|\lambda|\bar{\phi}^2\right] \quad \text{with} \quad J \in \mathbb{Z}/2$$

• Conformal zero-mode (J=0): $\mathcal{M}_0^{(h)} \frac{\partial \phi}{\partial \bar{\phi}_C} = 0$

• Translation zero-mode (J = 1/2): $\mathcal{M}_{1/2}^{(h)} \partial_r \bar{\phi} = 0$

Introduction Review Zero-mode Result Conclusion
Conformal zero-mode

Decomposition using eigenfunctions of $\mathcal{M}_0^{(h)}$ zero-mode: $\mathcal{M}_0^{(h)}h_c = 0$

$$h^{(J=0)} = \sum_{\text{eigen}} h_i^{(J=0)} = \alpha_c \mathcal{N}_c \frac{\partial \bar{\phi}}{\partial \bar{\phi}_C} + \cdots \quad \text{with} \quad \int d^4 r \ h_c^2 = 2\pi$$

Under
$$\bar{\phi}_C \to \bar{\phi}_C + \Delta \bar{\phi}_C$$

$$\Phi \ni \frac{1}{\sqrt{2}}(\bar{\phi}+h) \to \frac{1}{\sqrt{2}}(\bar{\phi}+\frac{\partial\bar{\phi}}{\partial\bar{\phi}_C}\Delta\bar{\phi}_C + \alpha_c\mathcal{N}_c\frac{\partial\bar{\phi}}{\partial\bar{\phi}_C} + \cdots)$$

Path integral along the conformal zero-mode direction

$$\int \mathcal{D}h_c \equiv \int \frac{d\bar{\phi}_C}{\mathcal{N}_c}$$

(ロ)
 (日)
 (日)

Introduction Review Zero-mode Result Conclusion

Higgs J = 0 mode contribution

$$\int \mathcal{D}h^{(J=0)} = \left[\mathrm{Det}\mathcal{M}_0^{(h)} \right]^{-1/2} \to \int \frac{d\bar{\phi}_C}{\mathcal{N}_c} \left[\mathrm{Det}'\mathcal{M}_0^{(h)} \right]^{-1/2}$$

Det' means that zero eigenvalue is omitted from Det

$$\operatorname{Det}' \mathcal{M}_0^{(h)} \equiv \lim_{\nu \to 0} \nu^{-1} \operatorname{Det}(\mathcal{M}_0^{(h)} + \nu)$$

Use "Gelfand-Yaglom theorem"

$$\frac{\text{Det}\mathcal{M}_J}{\text{Det}\widehat{\mathcal{M}}_J} = \lim_{r \to \infty} \frac{f_J(r)}{\widehat{f}_J(r)} \left[\frac{f_J(0)}{\widehat{f}_J(0)} \right]^{-1} \quad \text{with} \quad \begin{cases} \mathcal{M}_J f_J(r) = 0\\ \widehat{\mathcal{M}}_J \widehat{f}_J(r) = 0 \end{cases}$$

The final result is

['17 Andreassen, Frost, and Schwartz] ['17 SC, Moroi, and Shoji]

$$\left|\frac{\operatorname{Det}\mathcal{M}_{0}^{(h)}}{\operatorname{Det}\widehat{\mathcal{M}}_{0}^{(h)}}\right|^{-1/2} \to \int \frac{d\bar{\phi}_{C}}{\bar{\phi}_{C}} \left(\frac{16\pi}{|\lambda|}\right)^{1/2}$$

8/13

Introduction Review Zero-mode Result Conclusion
Summary: Decay rate of the EW vacuum

Final decay rate formula

$$\gamma = \int d\ln \bar{\phi}_C \left[I^{(h)} I^{(W,Z,\varphi)} I^{(t)} I^{(\text{extra})} e^{-\mathcal{B}} \right]_{\mu \sim \mathcal{O}(\bar{\phi}_C)}$$

with $I^{(X)}$: contribution of Higgs / gauge and NG / top quark We provide, Setup: conformal, 1D bounce

- analytic expressions (Solve diff. eq., Sum over J)
- public code *ELVAS* : ['18 SC, Moroi, and Shoji] application to SM, SM + extra scalars/fermions

Decay rate $\log_{10} \gamma$ as a function of m_h and m_t

$$\begin{split} \log_{10}[\gamma \times \text{Gyr Gpc}^3] &= -582^{+40}_{-45} \stackrel{+184}{_{-329}} \stackrel{+144}{_{-218}} \stackrel{+2}{_{-128}} \\ \text{Errors: from } m_h, \, m_t, \, \alpha_s, \, \mu \end{split}$$

Introduction Review Zero-mode Result Conclusion

 Result2:
 SM
 right-handed neutrino

Right-handed neutrino N with Yukawa interaction

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{2}M_N\overline{N}N + y_N\Phi^*L\overline{N}$$

Decay rate $\log_{10} \gamma$ as a function of M_N and y_N

Purple: contours of $m_{\nu} = 0.08, 0.05 \text{ eV}$ $y_N \lesssim 0.65 \sim 0.8$ is required

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回日 つのつ

Zero-mode

Result3: SM + vector-like quarks/leptons

Vector-like quarks $Q, \overline{Q}, D, \overline{D}$ $\Delta \mathcal{L}_{\text{Yukawa}} = y \Phi^* Q \overline{D} + y \Phi \overline{Q} D$

Vector-like leptons $L, \overline{L}, E, \overline{E}$ $\Delta \mathcal{L}_{\text{Yukawa}} = y \Phi^* L \overline{E} + y \Phi \overline{L} E$

		Result	Conclusion
Conclusion			

We provide a way to treat conformal zero-mode

This completes NLO calculation of decay rate when Higgs potential is scale invariant

Our works are also characteristic for

- Analytic expressions
- Application is not limited to the SM

Thank you for listening!!

$$R \equiv \sqrt{\frac{8}{|\lambda|}} \frac{1}{\bar{\phi}_C}$$

Define the scale R_* of the largest contribution to γ

$$\beta_{\lambda}(\mu) = 0, \beta_{\lambda}'(\mu) > 0 \quad \text{at} \quad \mu = R_{*}^{-1}$$

	'01 Isidori	'17 Andreassen	'17'18 Chigusa
Translation zero mode	0	\bigcirc	0
Conformal zero mode	Fix $R = R_*$ Dim. analysis	0	0
Gauge zero mode	0	0	0
Gauge fixing	Feynman gauge $R_{\xi=1}$	Fermi gauge $\mathcal{L} = \frac{1}{2\xi} (\partial_{\mu} A_{\mu})^2$	Fermi gauge $\mathcal{L} = \frac{1}{2\xi} (\partial_{\mu} A_{\mu})^2$
Renorm. scale	$\mu = R_*^{-1}$	$\mu = R_*^{-1}$ Resum $\ln^n(\mu R)$	$\mu = R^{-1}$

14/13

Effect of gravity (SM + right-handed neutrino)

$$\gamma_{\rm pl} \equiv \int^{\bar{\phi}_C = M_{\rm pl}} d\ln \bar{\phi}_C[\cdots]$$

- Insensitive to Planck suppressed operators
- Lower limit on γ

$$\gamma_{\infty} \equiv \int^{\bar{\phi}_C = \infty} d \ln \bar{\phi}_C[\cdots]$$

• Modified by Planck suppressed operators

(日) (同) (日) (日) (日) (日) (0)

• $\gamma_{\infty} = \gamma$ if no such operators

Largest contribution to γ

Renormalization in MSbar scheme

For example, consider the Higgs fluctuation $\ln \mathcal{A}^{(h)}$ determined by

$$\mathcal{M}_J = -\Delta_J + 3\lambda\bar{\phi}^2 \quad \widehat{\mathcal{M}}_J = -\Delta_J$$

UV divergence comes from \sum_{J}^{∞} First regulate it with $\epsilon_h > 0$ as

$$-\frac{1}{2}\sum_{J}^{\infty}\frac{(2J+1)^2}{(1+\epsilon_h)^J}\ln\frac{\mathrm{Det}\mathcal{M}_J}{\mathrm{Det}\widehat{\mathcal{M}}_J}$$

Renormalizable theory: Only up o $\mathcal{O}(\lambda^2)$ terms diverge

$$-\frac{1}{2}\sum_{J}^{\infty}\frac{(2J+1)^2}{(1+\epsilon_h)^J}\ln\left[\frac{\mathrm{Det}\mathcal{M}_J}{\mathrm{Det}\widehat{\mathcal{M}}_J}\right]_{\mathcal{O}(\lambda^2)}$$

Call it $[\ln \mathcal{A}^{(h)}]_{\mathrm{div},\epsilon_h}$

 $\frac{\text{Divergent part can be evaluated in}}{\text{MS}}$ scheme by diagramatic approach

Call it $[\ln \mathcal{A}^{(h)}]_{\text{div},\epsilon}$ Renormalized contribution of Higgs: $\ln \mathcal{A}^{(h)} - [\ln \mathcal{A}^{(h)}]_{\text{div},\epsilon_{h}} + [\ln \mathcal{A}^{(h)}]_{\text{div},\epsilon}$ $+ (\text{counter term in } \overline{\text{MS}})$ Also take care of the translation zero-mode ['77 Callan, Coleman]

$$\frac{\mathcal{A}^{(h)}}{VT} \to \int \frac{d\bar{\phi}_C}{\bar{\phi}_C} \left(\frac{16\pi}{|\lambda|}\right)^{\frac{1}{2}} \mathbf{16}\pi^2 \bar{\phi}_C^4 \prod_{J\geq 1} \left[\frac{\mathrm{Det}\mathcal{M}_J^{(h)}}{\mathrm{Det}\widehat{\mathcal{M}}_J^{(h)}}\right]^{-\frac{(2J+1)^2}{2}}$$

 $(2J+1)^2$: degeneracy of the J mode

Gauge J = 0 mode has a zero-mode related to gauge symmetry

$$\mathcal{A}^{(\mathcal{A}^{\mu},\varphi)} = \mathcal{V}_{\mathrm{SU}(2)} \left(\frac{16\pi}{|\lambda|}\right)^{\frac{3}{2}} \prod_{J \ge 1/2} \left[\frac{\mathrm{Det}\mathcal{M}_{J}^{(A^{\mu},\varphi)}}{\mathrm{Det}\widehat{\mathcal{M}}_{J}^{(A^{\mu},\varphi)}}\right]^{-\frac{(2J+1)^{2}}{2}}$$

with $\mathcal{V}_{\mathrm{SU}(2)} = 2\pi^{2}$: gauge volume

RG evolution and $d\gamma/d\ln R$ in SM

The decay rate γ is related to the 4D Euclidean action:

$$Z \equiv \left\langle \mathrm{FV} \left| e^{-\mathcal{H}T} \right| \mathrm{FV} \right\rangle = N \int \mathcal{D}\Psi \ e^{-S_E} \propto \exp(i\gamma VT)$$

The path integral is dominated by the bounce $\overline{\phi}$

The bounce $\overline{\phi}$: O(4) symmetric solution of EoM

$$\left[\partial_r^2 \Phi + \frac{3}{r} \partial_r \Phi - \frac{\partial V}{\partial \Phi}\right]_{\Phi \to \bar{\phi}} = 0 \quad \text{with} \quad \bar{\phi}(\infty) = v: \text{ false vacuum}$$

The decay rate per unit volume

$$\gamma = \frac{1}{VT} \operatorname{Im} \frac{\int_{1-\text{bounce}} \mathcal{D}\Psi \ e^{-S_E}}{\int_{0-\text{bounce}} \mathcal{D}\Psi \ e^{-S_E}} \equiv A e^{-\mathcal{B}}$$

Expand the action around the classical path

$$S_E[\bar{\phi} + \Psi] = S_E[\bar{\phi}] + \frac{1}{2} \int d^4x \ \Psi \mathcal{M} \Psi + \mathcal{O}(\Psi^3)$$
$$S_E[v + \Psi] = S_E[v] + \frac{1}{2} \int d^4x \ \Psi \widehat{\mathcal{M}} \Psi + \mathcal{O}(\Psi^3)$$
$$\Rightarrow \begin{cases} \mathcal{B} = S_E[\bar{\phi}] - S_E[v] \\ A = \frac{1}{VT} \left| \frac{\text{Det } \mathcal{M}}{\text{Det } \widehat{\mathcal{M}}} \right|^{-\frac{1}{2}} \end{cases}$$

Longer description of the Higgs mode

Expansion around the bounce

$$\Phi = \frac{1}{\sqrt{2}} e^{i\theta^a \sigma^a} \left(\begin{array}{c} \phi^1 + i\phi^2 \\ \bar{\phi} + h - i\phi^3 \end{array} \right), \quad W^a_\mu = w^a_\mu, \quad B^a_\mu = b^a_\mu$$

Fluctuation operator for the Higgs mode

$$\mathcal{L} \ni \frac{1}{2}h(-\partial^2 - 3|\lambda|\bar{\phi}^2)h \equiv \frac{1}{2}h\mathcal{M}^{(h)}h, \quad \widehat{\mathcal{M}}^{(h)} \equiv -\partial^2$$

Angular momentum expansion in 4D using $J\in\mathbb{Z}/2$

$$h(x) = \sum_{n,J,m_A,m_B} \mathcal{R}_{n,J}(r) \mathcal{Y}_{J,m_A,m_B}(\hat{\mathbf{r}})$$
$$\mathcal{M}_J^{(h)} = -\Delta_J - 3|\lambda|\bar{\phi}^2 = -\left[\partial_r^2 + \frac{3}{r}\partial_r - \frac{4J(J+1)}{r^2} + 3|\lambda|\bar{\phi}^2\right]$$

$$\frac{\text{Det}\mathcal{M}_J}{\text{Det}\widehat{\mathcal{M}}_J} = \lim_{r \to \infty} \frac{f_J(r)}{\widehat{f}_J(r)} \left[\frac{f_J(0)}{\widehat{f}_J(0)} \right]^{-1} \quad \text{with} \quad \begin{cases} \mathcal{M}_J f_J(r) = \\ \widehat{\mathcal{M}}_J \widehat{f}_J(r) = \end{cases}$$

Higgs mode contribution to \mathcal{A}

 $(2J+1)^2$: degeneracy of the *J*-mode

0 0

$$\mathcal{A}^{(h)} = \lim_{r \to \infty} \prod_{J} \left[\frac{f_{J}^{(h)}(r)}{r^{2J}} \right]^{-\frac{(2J+1)^2}{2}} \quad \text{with} \quad \mathcal{M}_{J}^{(h)} f_{J}^{(h)}(r) = 0$$

However, $f_0^{(h)}(r \rightarrow \infty) = f_{1/2}^{(h)}(r \rightarrow \infty) = 0$

• Conformal zero-mode in J = 0: $f_0^{(h)} = \frac{\partial \bar{\phi}}{\partial \bar{\phi}_C}$

• Translation zero-mode in J = 1/2: $f_{1/2}^{(h)} = -\frac{4}{|\lambda|\bar{\phi}_C} \partial_r \bar{\phi}$

Use

R integral and choice of μ

Simpler example: Decay width of t

$$\Gamma_t = \frac{1}{M_t} \text{Im } \mathcal{M}_{t \to t} = \int \prod_i^L \frac{d^d k_i}{(2\pi)^d} \cdots \delta(\text{on-shell conditions})$$

- Integral just sums up all possible configurations
- Each configuration is "physical"
- Each configuration is μ -independent (up to higher loop)

Vacuum decay rate

$$\gamma = \frac{1}{VT} \operatorname{Im} \frac{\int_{1-\text{bounce}} \mathcal{D}\Psi \ e^{-S_E}}{\int_{0-\text{bounce}} \mathcal{D}\Psi \ e^{-S_E}} = \int d\ln R \ [\cdots]_{\mu=R}$$

- Integrand should be μ -independent
- Choice of $\mu = R$ is appropriate