Electroweak Symmetry Breaking
by a Neutral Sector:
Dynamical Relaxation

of the Little Hierarchy Problem

Bumseok KYAE

(Pusan Nat'l Univ.)

1805.xxxxx

May 24 (2018) @ PLANCK2018




* The naturalness problem of EW scale and Higgs boson mass
has been the most important issue for last four decades.

* The MSSM has been the most promising BSM candidate.

* No evidence of BSM has been observed yet at LHC.
— Theoretical puzzles raised in the SM still remain UNsolved.

* A barometer of the solution to the naturalness problem is
the stop mass.
The stop mass bound has been already > 1 TeV.
(The gluino mass bound has exceeded > 2 TeV.)
— They start threatening the traditional status of SUSY as a
solution to the naturalness problem of the EW phase transition.




* ATLAS and CMS have discovered the SM(-like) Higgs
with 125-126 GeV mass, which is too heavy as a SUSY Higgs.

* According to the recent analyses, 10-20 TeV stop mass
is necessary for the 125 GeV Higgs mass
(without a large stop mixing).
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* Recently some new ideas (without SUSY) have been suggested
to relax the gauge hierarchy problem.

* For UV completion, however, embedding them in SUSY also
have been discussed.




* Recently some new ideas (without SUSY) have been suggested
to relax the gauge hierarchy problem.

* For UV completion, however, embedding them in SUSY also
have been discussed.

We will attempt to address
the (little) hierarchy problem
in the SUSY framework.




Little Hierarchy Problem
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Why is M, [=(g,%+8,%)(v,2+V,4°)/2] so small
compared to the soft masses ?

[v2+v2=<|H|?>=(174 GeV?]



Problems in SUSY models

Gravity Mediated SUSY Breaking mech.
y and By terms are O.K.

But Flavor and CP problems would arise.

Gauge Mediated SUSY Breaking mech.

Flavor and CP problems are absent.
But p and By problems would be serious.
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Effective mu and Bmu

Heff = /\1<Xr> + /\2<O> + IL.

Bﬂ-eﬂ = (MU* + Agh*<0*>) <Y*> T A1(1.1<X> + Ai_),(l.2<(ﬁ> T Bﬂ




Extreme Conditions

extreme conditions for X, Y. and ¢
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Solutions of Extrm. Condi.
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Extrm. Condi. for ®

The extremum condition for 7 (= n¢/M )
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Extrm. Condi. for ®

The extremum condition for 7 (= n¢/M )
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Dynamical Relaxation
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satisfying the conditions for EW symmetry breaking,
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Dynamical Relaxation
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Little Hierarchy Problem

[t is because m,, My are so small
compared to the MSSM soft masses.

Why is M, [=(g,%+&,9)V,%+v,°)/ 2] so small
compared to the soft masses ?

[v2+v2=<|H|2>= (174 GeV)?]
u d



For small enough m,,?

Introduce Gauge Med. SUSY Breaking
as well as Gravity Med. SUSY breaking

Gauge Med. — Heavy MSSM soft masses
avoiding exp. Bounds and SUSY flavor and CP problems

Gravity Med. — Small MSSM singlet masses and By term
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For small enough m

Introduce Gauge Med. SUSY Breaking
as well as Gravity Med. SUSY breaking

« A, and/or A, should be Small enough.
- Messenger Scale of the Gauge Med.
needs to be LOW enough.




Focus Point
(A,=0.7 > A,=0.02)
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RG evolutions of m,> under various trial m,’s.

the messenger scale = 500 TeV (L) and 12 TeV (R).
In both cases, the stop mass scales = 10 TeV.



Focus Point

Case 1 tan 5 =5 Case 11 tan 3 = 15

Ao = 0.03| my; =10TeV |[Ao =0.07| m; = 20TeV
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Focus Point

Case 1 tan 5 =5 Case 11 tan 3 = 15
Ao = 0.03| my; =10TeV |[Ao =0.07| m; = 20TeV
AN = 0.7 |Apess = 15 TeVI| A\ = 0.7 [ Ajess = 25 TeV
A,z —4.1 Az —10.6
Ay, 47 4 Ay, 128.3
Az 29.7 Az 61.9

(M;, M,, M) =(12, 5, 3) TeV (1) , (21, 9, 5) TeV (lI)

m, % =-(2.5TeV)? (L) and -(1.8 TeV)? TeV (II).
SUSY particles’ masses of the 15t, 2"d generations are much heavier.




Mass Matrix
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Mixing Constraints

O; -diag.(mj, m3, M3)-O;

vields a symmetric matrix M7, (= M3;) with the following elements:
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Mixing Constraints

O; -diag.(mj, m3, M3)-O;
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Mixing Constraints

O; -diag.(mj, m3, M3)-O;
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Mixing Constraints
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Mixing Constraints

(2,3): koM = ﬂ[%f&iuﬁ cosf. )\1AQ|H|2 — O M?sinf cosb.

Mz + 6M? = AM3(1 — &),



Mixing Constraints
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Mixing Constraints
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Mixing Constraints
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Mixing Constraints

We can fulfill the constraints e.g. with
e 1,=0.7, | 4,/ 1,]=0.03, tan{ <10

* M;~5TeV, m, ~ 500 GeV
€, ~ 1071—1072 [tan6] >10*1

(almost maximal mixing btw ¢ and X)

o Fge /<S> ~ 6TeV




Conclusion

e The MSSM p term is dynamically adjusted by singlets
such that the min. cond. of the Higgs is fulfilled .

 The large VEV of singlets (4 term) are efficiently controlled
by a Higgs VEV of order 100 GeV.

* A relatively small soft mass of a singlet is responsible
for the small <H> (or small M,).

e SUSY particles’ masses are well-above the exp. bounds,
and FCNC would adequately be suppressed.

* Mixings btw the Higgs and singlets constrain
the allowed parameter space.




