Searches for long-lived particle at the LHC

Closing the gaps in BSM signature coverage

Nishita Desai

LUPM, Montpellier*

Based on: arXiv:1804.02357, 1803.10379, 1606.03099 and 1404.5061

With: B. Allanach, M. Badziak, G. Cottin, A. Bharucha, F. Brümmer, J. Ellis, C. Hugonie, F. Luo, J. Marrouche, R. Ziegler

22 May 2018; PLANCK 2018

Coverage of prompt signatures

Selected CMS SUSY Results* - SMS Interpretation

ICHEP '16 - Moriond '17

els

00 N

đ

Ы

G

ũ

Coverage of prompt signatures

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: July 2017

ATLAS Preliminary $\int \mathcal{L} dt = (3.2 - 37.0) \text{ fb}^{-1}$ $\sqrt{s} = 8, 13 \text{ TeV}$

	Model	ℓ,γ	Jets†	E ^{miss} T	∫£ dt[fb] Limit			Reference
Extra dimensions	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$ ADD QBH ADD BH high $\sum p_T$ ADD BH multijet RS1 $G_{KK} \rightarrow \gamma\gamma$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq$ 2UED / RPP	$ \begin{array}{c} 0 \ e, \mu \\ 2 \ \gamma \\ - \\ \geq 1 \ e, \mu \\ - \\ 2 \ \gamma \\ \ell \nu \\ 1 \ e, \mu \\ 1 \ e, \mu \end{array} $	1 - 4j - 2 j $\ge 2j$ $\ge 3j$ - 1 J $\ge 2b, \ge 3$	Yes - - - Yes j Yes	36.1 36.7 37.0 3.2 3.6 36.7 36.1 13.2	M _D M _S M _{th} M _{th} M _{th} G _{KK} mass G _{KK} mass	7.75 TeV 8.6 TeV 8.9 TeV 8.2 TeV 9.55 TeV 4.1 TeV 1.75 TeV 1.6 TeV	n = 2 n = 3 HLZ NLO n = 6 $n = 6, M_D = 3 \text{ TeV, rot BH}$ $n = 6, M_D = 3 \text{ TeV, rot BH}$ $k/\overline{M}_{Pl} = 0.1$ $k/\overline{M}_{Pl} = 1.0$ Tier (1,1), $\mathcal{B}(\mathcal{A}^{(1,1)} \rightarrow tt) = 1$	ATLAS-CONF-2017-060 CERN-EP-2017-132 1703.09217 1606.02265 1512.02586 CERN-EP-2017-132 ATLAS-CONF-2017-051 ATLAS-CONF-2016-104
Gauge bosons	$\begin{array}{l} \operatorname{SSM} Z' \to \ell\ell \\ \operatorname{SSM} Z' \to \tau\tau \\ \operatorname{Leptophobic} Z' \to bb \\ \operatorname{Leptophobic} Z' \to tt \\ \operatorname{SSM} W' \to \ell\nu \\ \operatorname{HVT} V' \to WV \to qqqq \ \operatorname{mod} \\ \operatorname{HVT} V' \to WH/ZH \ \operatorname{model} \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \\ \operatorname{LRSM} W'_R \to tb \end{array}$	2 e,μ 2 τ - 1 e,μ del B 0 e,μ B multi-channe 1 e,μ 0 e,μ	- 2 b ≥ 1 b, ≥ 1J/ 2 J el 2 b, 0-1 j ≥ 1 b, 1 J	– – /2j Yes Yes – Yes	36.1 36.1 3.2 3.2 36.1 36.7 36.1 20.3 20.3	Z' mass Z' mass Z' mass W' mass V' mass V' mass W' mass W' mass	4.5 TeV 2.4 TeV 1.5 TeV 2.0 TeV 5.1 TeV 3.5 TeV 2.93 TeV 1.92 TeV 1.76 TeV	$\Gamma/m = 3\%$ $g_V = 3$ $g_V = 3$	ATLAS-CONF-2017-027 ATLAS-CONF-2017-050 1603.08791 ATLAS-CONF-2016-014 1706.04786 CERN-EP-2017-147 ATLAS-CONF-2017-055 1410.4103 1408.0886
CI	Cl qqqq Cl ℓℓqq Cl uutt	– 2 e,µ 2(SS)/≥3 e,µ	2 j _ µ ≥1 b, ≥1 j	– – j Yes	37.0 36.1 20.3	Λ Λ Λ	4.9 TeV	21.8 TeV η_{LL}^{-} 40.1 TeV η_{LL}^{-} $ C_{RR} = 1$	1703.09217 ATLAS-CONF-2017-027 1504.04605
DM	Axial-vector mediator (Dirac Vector mediator (Dirac DM) $VV_{\chi\chi}$ EFT (Dirac DM)	DM) 0 e, μ 0 e, μ, 1 γ 0 e, μ	1 - 4 j $\leq 1 j$ $1 J, \leq 1 j$	Yes Yes Yes	36.1 36.1 3.2	m _{med} m _{med} M _* 700 GeV	1.5 TeV 1.2 TeV	$\begin{array}{l} g_q \!=\! 0.25, g_{\chi} \!=\! 1.0, m(\chi) < \! 400 \; {\rm GeV} \\ g_q \!=\! 0.25, g_{\chi} \!=\! 1.0, m(\chi) < \! 480 \; {\rm GeV} \\ m(\chi) < \! 150 \; {\rm GeV} \end{array}$	ATLAS-CONF-2017-060 1704.03848 1608.02372
ΓØ	Scalar LQ 1 st gen Scalar LQ 2 nd gen Scalar LQ 3 rd gen	2 e 2 μ 1 e,μ	≥ 2 j ≥ 2 j ≥1 b, ≥3 j	_ _ Yes	3.2 3.2 20.3	LQ mass LQ mass 1. LQ mass 640 GeV	1.1 TeV 05 TeV	$egin{array}{lll} eta=1\ eta=1\ eta=1\ eta=1\ eta=1\ eta=0 \end{array}$	1605.06035 1605.06035 1508.04735
Heavy quarks	$ \begin{array}{l} VLQ \ TT \rightarrow Ht + X \\ VLQ \ TT \rightarrow Zt + X \\ VLQ \ TT \rightarrow Wb + X \\ VLQ \ BB \rightarrow Hb + X \\ VLQ \ BB \rightarrow Zb + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ BB \rightarrow Wt + X \\ VLQ \ QQ \rightarrow WqWq \end{array} $	0 or 1 e, µ 1 e, µ 1 e, µ 2/≥3 e, µ 1 e, µ 1 e, µ	$\begin{array}{l} \geq 2 \ b, \geq 3 \\ \geq 1 \ b, \geq 3 \\ \geq 1 \ b, \geq 2 \ J, \geq 3 \\ \geq 2 \ b, \geq 3 \\ \geq 2/\geq 1 \ b \\ \geq 1 \ b, \geq 1 \ J, \\ \geq 4 \ j \end{array}$	j Yes j Yes /2j Yes j Yes - /2j Yes Yes	13.2 36.1 36.1 20.3 20.3 36.1 20.3	T mass T mass T mass B mass 700 GeV B mass 790 Ge B mass Q mass 690 GeV	1.2 TeV 1.16 TeV 1.35 TeV 1.25 TeV	$\begin{aligned} \mathcal{B}(T \to Ht) &= 1\\ \mathcal{B}(T \to Zt) &= 1\\ \mathcal{B}(T \to Wb) &= 1\\ \mathcal{B}(B \to Hb) &= 1\\ \mathcal{B}(B \to Zb) &= 1\\ \mathcal{B}(B \to Wt) &= 1 \end{aligned}$	ATLAS-CONF-2016-104 1705.10751 CERN-EP-2017-094 1505.04306 1409.5500 CERN-EP-2017-094 1509.04261
Excited fermions	Excited quark $q^* \rightarrow qg$ Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow bg$ Excited quark $b^* \rightarrow Wt$ Excited lepton ℓ^* Excited lepton γ^*	- 1 γ - 1 or 2 e, μ 3 e, μ 3 e, μ, τ	2 j 1 j 1 b, 1 j 1 b, 2-0 j -	- - Yes -	37.0 36.7 13.3 20.3 20.3 20.3	q° mass q° mass b° mass b° mass f° mass v° mass	6.0 TeV 5.3 TeV 2.3 TeV 1.5 TeV 3.0 TeV 1.6 TeV	only u^* and $d^*, \Lambda = m(q^*)$ only u^* and $d^*, \Lambda = m(q^*)$ $f_g = f_L = f_R = 1$ $\Lambda = 3.0 \text{ TeV}$ $\Lambda = 1.6 \text{ TeV}$	1703.09127 CERN-EP-2017-148 ATLAS-CONF-2016-060 1510.02664 1411.2921 1411.2921
Other	LRSM Majorana v Higgs triplet $H^{\pm\pm} \rightarrow \ell\ell$ Higgs triplet $H^{\pm\pm} \rightarrow \ell\tau$ Monotop (non-res prod) Multi-charged particles Magnetic monopoles	2 e, μ 2,3,4 e, μ (SS 3 e, μ , τ 1 e, μ - - - $\sqrt{s} = 8 \text{ TeV}$	2 j 5) - 1 b - - √s = 1:	- - Yes - - 3 TeV	20.3 36.1 20.3 20.3 20.3 7.0	N ^o mass H ^{±±} mass 870 C H ^{±±} mass 400 GeV spin-1 invisible particle mass 657 GeV multi-charged particle mass 785 Ge monopole mass 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	2.0 TeV SeV 1.34 TeV 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	$m(W_R) = 2.4$ TeV, no mixing DY production DY production, $\mathcal{B}(H_L^{\pm\pm} \rightarrow \ell \tau) = 1$ $a_{non-res} = 0.2$ DY production, $ q = 5e$ DY production, $ g = 1g_D$, spin 1/2	1506.06020 ATLAS-CONF-2017-053 1411.2921 1410.5404 1504.04188 1509.08059
							-	Mass scale IeV	

3

*Only a selection of the available mass limits on new states or phenomena is shown. †Small-radius (large-radius) jets are denoted by the letter j (J).

Prompt objects

Prompt objects

Models predicting long lived particles

Dark Matter

SUSY (i.e. Winos, Higgsinos) Coannihilation with scalars Dark Photon Higgs Portal Freeze-in

Naturalness

Hidden valleys GMSB SUSY RPV SUSY

Neutrino Masses Flavour Anomalies Sterile Neutrinos L-R models (Z' & W's)

• • •

Charged track searches

Disappearing track searches

arXiv:1712.02118

Displaced Vertices

arXiv:1710.04901

Traditional searches fail for LLPs

q

"Unexpected" cuts may restrict what we choose to see

ATLAS-CONF-2018-003

Looking at the simplest jets + MET search:

Selection GeV	RPC	$\tau = 100 \text{ ns}$	$\tau = 10 \text{ ns}$	$\tau = 1 \text{ ns}$	$\tau = 0.1 \text{ ns}$	$\tau = 0.01 \text{ ns}$
DxAOD skimming	94.0	82.0	86.0	75.0	77.0	78.0
$\mathrm{Jet}/E_{\mathrm{T}}^{\mathrm{miss}}$ cleaning	98.9	93.9	76.7	96.0	100.0	100.0
Cosmic muon cut	98.9	98.7	97.0	93.1	77.9	78.2
Lepton veto	58.7	53.9	54.7	47.8	43.3	39.3
$N_{\rm jets} \ge 4$	98.1	97.6	97.1	100.0	100.0	100.0
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss,track}} > 30 \mathrm{~GeV}$	71.7	75.0	85.3	90.6	88.5	87.5
$N_{b-\text{jet}} \ge 1$	92.1	90.0	93.1	89.7	100.0	100.0
$E_{\rm T}^{\rm miss} > 250 {\rm GeV}$	60.0	59.3	44.4	15.4	12.6	10.5
$\left \Delta\phi\left(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss,\mathrm{track}}} ight)\right < 1/3\pi$	95.2	93.8	91.7	72.5	72.4	63.6
$\left \Delta\phi\left(\mathrm{jet}^{0,1,2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}} ight)\right > 0.4$	95.0	93.3	85.5	65.5	71.4	71.4
$m_{\text{jet},R=1.2}^0 > 120 \text{ GeV}$	73.7	78.6	75.5	78.9	86.7	90.0

"Unexpected" cuts may restrict what we choose to see

ATLAS-CONF-2018-003

Looking at the simplest jets + MET search:

Selection GeV	RPC	$\tau = 100 \text{ ns}$	$\tau = 10 \text{ ns}$	$\tau = 1 \text{ ns}$	$\tau = 0.1 \text{ ns}$	$\tau = 0.01 \text{ ns}$
DxAOD skimming	94.0	82.0	86.0	75.0	77.0	78.0
$\mathrm{Jet}/E_{\mathrm{T}}^{\mathrm{miss}}$ cleaning	98.9	93.9	76.7	96.0	100.0	100.0
Cosmic muon cut	98.9	98.7	97.0	93.1	77.9	78.2
Lepton veto	58.7	53.9	54.7	47.8	43.3	39.3
$N_{\rm jets} \ge 4$	98.1	97.6	97.1	100.0	100.0	100.0
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss,track}} > 30 \mathrm{~GeV}$	71.7	75.0	85.3	90.6	88.5	87.5
$N_{b-\mathrm{jet}} \ge 1$	92.1	90.0	93.1	89.7	100.0	100.0
$E_{\rm T}^{\rm miss} > 250 { m ~GeV}$	60.0	59.3	44.4	15.4	12.6	10.5
$\left \Delta\phi\left(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss,track}}\right)\right < 1/3\pi$	95.2	93.8	91.7	72.5	72.4	63.6
$\left \Delta\phi\left(\mathrm{jet}^{0,1,2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}\right)\right > 0.4$	95.0	93.3	85.5	65.5	71.4	71.4
$m_{\text{jet},R=1.2}^0 > 120 \text{ GeV}$	73.7	78.6	75.5	78.9	86.7	90.0

Already approx. 50% loss before MET cuts

"Unexpected" cuts may restrict what we choose to see

ATLAS-CONF-2018-003

Looking at the simplest jets + MET search:

Selection GeV	RPC	$\tau = 100 \text{ ns}$	$\tau = 10 \text{ ns}$	$\tau = 1 \text{ ns}$	$\tau = 0.1 \text{ ns}$	$\tau = 0.01 \text{ ns}$
DxAOD skimming	94.0	82.0	86.0	75.0	77.0	78.0
$\mathrm{Jet}/E_{\mathrm{T}}^{\mathrm{miss}}$ cleaning	98.9	93.9	76.7	96.0	100.0	100.0
Cosmic muon cut	98.9	98.7	97.0	93.1	77.9	78.2
Lepton veto	58.7	53.9	54.7	47.8	43.3	39.3
$N_{\rm jets} \ge 4$	98.1	97.6	97.1	100.0	100.0	100.0
$\mathbf{p}_{\mathrm{T}}^{\mathrm{miss,track}} > 30 \mathrm{~GeV}$	71.7	75.0	85.3	90.6	88.5	87.5
$N_{b-\text{jet}} \ge 1$	92.1	90.0	93.1	89.7	100.0	100.0
$E_{\rm T}^{\rm miss} > 250 { m ~GeV}$	60.0	59.3	44.4	15.4	12.6	10.5
$\left \Delta \phi \left(\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}, \mathbf{p}_{\mathrm{T}}^{\mathrm{miss, track}} \right) \right < 1/3\pi$	95.2	93.8	91.7	72.5	72.4	63.6
$\left \Delta\phi\left(\mathrm{jet}^{0,1,2},\mathbf{p}_{\mathrm{T}}^{\mathrm{miss}}\right)\right > 0.4$	95.0	93.3	85.5	65.5	71.4	71.4
$m_{\text{jet},R=1.2}^0 > 120 \text{ GeV}$	73.7	78.6	75.5	78.9	86.7	90.0

Already approx. 50% loss before MET cuts

Important to map all possible signatures to avoid the same mistakes!

Next-to-minimal DM

Dark Matter makes up ~20% of our universe; an EW scale particle seems to be a good fit

$$\Omega h^2 \sim 0.1 \Rightarrow \langle \sigma v \rangle \sim 1 \text{ pb} \cdot c$$

 $\Rightarrow m_{\chi} \sim O(10^2 - 10^3) \text{ GeV}; g \sim g_{\text{EW}}$

100 TeV collider?

What about next-to-minimal scenarios?

- One SU(2) x U(1) singlet χ + one SU(2) N-plet ψ
- $\bullet \ \mathbb{Z}_2$ stabilises the lightest state

$$\mathcal{L}_{\rm DM} = i \psi^{\dagger} \overline{\sigma}^{\mu} D_{\mu} \psi + i \chi^{\dagger} \overline{\sigma}^{\mu} \partial_{\mu} \chi - \left(\frac{1}{2} M \psi \psi + \frac{1}{2} m \chi \chi + \text{h.c.}\right) + \mathcal{L}_{\rm quartic} + \mathcal{L}_{\rm mix}$$

$$\mathcal{L}_{\rm quartic} = \frac{1}{2} \frac{\kappa}{\Lambda} \phi^{\dagger} \phi \chi \chi + \frac{1}{2} \frac{\kappa'}{\Lambda} \phi^{\dagger} \phi \psi^{A} \psi^{A} \qquad \text{Strong limits from DD}$$

$$\boxed{N=3}$$

$$\mathcal{L}_{\rm mix} = \frac{\lambda}{\Lambda} \phi^{\dagger} \tau^{a} \phi \psi^{a} \chi + \text{h.c.} \quad \longrightarrow \quad \theta \approx \frac{\sqrt{2} \lambda v^{2}}{\Lambda (M-m)}$$

$$\boxed{N=5}$$

$$\mathcal{L}_{\rm mix} = \frac{\lambda}{\Lambda^{3}} C_{Aik}^{j\ell} \phi^{\dagger i} \phi_{j} \phi^{\dagger k} \phi_{\ell} \psi^{A} \chi + \text{h.c.} \quad \longrightarrow \quad \theta \approx \sqrt{\frac{2}{3}} \frac{\lambda v^{4}}{\Lambda^{3} (M-m)}.$$

Collider searches: Quintuplet model

Direct Detection constraints

- Look at parameters that gives right relic density
- Low mixing angle gives low DD cross section; however, not a problem at the LHC because production is primarily Drell-Yan!

Brümmer et al; arXiv:1703.00370 Brümmer, Bharucha, Desai; arXiv:1804.02357

Prompt search limits: SUSY searches

LHC limit on WH final state; not stronger than displaced leptons

Other limits: charged track searches

Rule out long-lived region i.e. when mass difference is smaller than pion, mass

The CMS displaced lepton search

Validation

Combination of displaced lepton and charged tracks

Brümmer, Bharucha, Desai; arXiv:1804.02357

Limits on mixing angle

Provides a complementary lower limit on mixing

Stau Co-annihilation

Stau Co-annihilation strip

Lifetime of the stau

Long-lived; charged tracks

Not enough missing energy!

Dequirement	Signal Region			
Requirement	$2 \mathrm{jW}$	3j		
$E_{\rm T}^{\rm miss}[{\rm GeV}] >$	160			
$p_{\rm T}(j_1) \; [{\rm GeV}] >$	130			
$p_{\rm T}(j_2) \; [{\rm GeV}] >$	60)		
$p_{\rm T}(j_3) \; [{\rm GeV}] >$		60		
$p_{\rm T}(j_4) \; [{\rm GeV}] >$				
$\Delta \phi(\text{jet}_{1,2,(3)}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$	0.4			
$\Delta \phi(\text{jet}_{i>3}, \mathbf{E}_{\mathrm{T}}^{\mathrm{miss}})_{\mathrm{min}} >$				
W candidates	$2(W \to j)$	_		
$E_{\rm T}^{\rm miss}/\sqrt{H_{\rm T}} [{\rm GeV}^{1/2}] >$				
$E_{\rm T}^{\rm miss}/m_{\rm eff}(N_{\rm j}) >$	0.25	0.3		
$m_{\rm eff}({\rm incl.}) \ [{\rm GeV}] >$	1800	2200		
$\frac{W \text{ candidates}}{E_{\mathrm{T}}^{\mathrm{miss}}/\sqrt{H_{\mathrm{T}}} [\mathrm{GeV}^{1/2}] >}$ $\frac{E_{\mathrm{T}}^{\mathrm{miss}}/m_{\mathrm{eff}}(N_{\mathrm{j}}) >}{m_{\mathrm{eff}}(\mathrm{incl.}) [\mathrm{GeV}] >}$	$\frac{2(W \rightarrow j)}{0.25}$ 1800	- 0.3 2200		

Long-lived charged tracks

- Charged particle searches are specialised to take time of flight into account
- Fraction of staus that are stable on the detector scale decreases with increasing mass difference
- Run I limit on fully stable staus is ~550 GeV; since not all our staus exit the detector, we get a limit ~300 GeV.

combining multiple searches

CMSSM Stau co-annihilation is (probably) dead

Coannihilation region not fully probed at 8 TeV; **we await 13 TeV data results in this Winter** to discover (or exclude!) the final part of the co-annihilation strip

Filling the gaps in DM searches

DM + s-channel mediator Dilepton, dijet, mono-jet, displaced vertices "squark" & "slepton" searches, DM + t-channel mediator (disappearing) charged tracks, displaced leptons jets+MET, di-lepton+MET searches, SU(2) n-plets mono-jet, mono-photon, (disappearing) charged tracks, displaced leptons Di-gamma, **ALPs** non-pointing photons Sterile Neutrinos, leptons+MET, Z/higgs+MET **Heavy Neutral leptons** displaced vertices, displaced leptons

Displaced Vertices in NMSSM

NMSSM: Long Lived Neutral Particles

• Supersymmetry with extra singlino & gauge mediation

Predicts 125 GeV higgs mass

Doesn't violate low-scale observables

Predicts high masses of strongly charged SUSY partners

- Predicts a pseudo-scalar boson of mass
 ~ 30 GeV; all chains end in producing this boson
- This boson has a lifetime ~ 1 mm (due to boost, decays after traveling ~100 mm in the detector)
- I. Can ordinary SUSY searches find this scenario?
- 2. What are the effects of the extra pseudo scalar

Recasting SUSY jets+MET search

The displaced vertex search

Finding the track efficiency

Tracking efficiency determined by fitting parameters of an empirical function

$$\begin{split} \varepsilon_{\rm trk} &= 0.5 \times (1 - \exp(-p_T/[4.0 \ {\rm GeV}])) & {\rm Remove \ low \ p_T} \\ &\times \exp(-z/[270 \ {\rm mm}]) & {\rm Dependence \ on \ z \ of \ DV} \\ &\times \max(-0.0022 \times r_\perp/[1 \ {\rm mm}] + 0.8, 0) & {\rm Dependence \ on \ radial \ distance \ of \ DV} \end{split}$$

Dependence on DV mass and N_{trk}

Modifying the displaced vertex criteria

- It is possible to significantly improve efficiency by relaxing cuts
- Not easy to estimate background for these changes
- Our solution: combine prompt cuts

 DV cuts & use prompt background
 estimate as a conservative upper
 limit
- Reach can be 1.9 TeV with 100/fb
- Much better sensitivity possible with better estimate of background

Updated DV analysis

Updated DV analysis

Cottin, Desai, Heisig & Lessa; arXiv:1803.10379

Summary

- Long-lived particles predicted by many theories as a natural consequence
- LLP searches often have nearly zero background and can provide a clean signature
- Co-annihilation partners in DM models are long-lived in certain parameter space and can provide the first indications of signal
- Light long-lived scalars decay to b-quarks or taus and escape current displaced vertex searches. Need to improve selection criteria.
- Overall: traditional searches ignore objects not originating from primary vertex; If we have a new theory with LLPs, it won't be possible to go back and look for LLPs in LHC data if we don't know what data to store.

Some LLP limits

ATLAS Long-lived Particle Searches* - 95% CL Exclusion

ATLAS Preliminary

Status: July 2015

*Only a selection of the available lifetime limits on new states is shown.

ARE WE MISSING SOMETHING?