LHC Recasting & Applications

Planck 2018 Bonn 22/05/2018

Jong Soo Kim

University of the Witwatersrand, Johannesburg

Filters	:: Time period - 20/05/2015	20/05/2018		Energy	 Particle type 	 Beam type 	✓ Fill type	- Reset	Default Apply
Online Integrated Luminosity									
ATLAS : 106.39 fb ⁻¹	ATLAS: 106.39 fb ⁻¹ ALICE: 42.66 pb ⁻¹			CMS : 107.91 fb ⁻¹			LHCb: 4.65 fb ⁻¹		
Integrated Luminosity Evolution							Exp	ort to CSV Download	Undo Zoom Hide
		• ATLAS	S • ALICE • CMS	LHCb					
1.20e+5 1.00e+5 8.00e+5									
6.00e+4- 6.00e+4- 4.00e+4-									
2.00e+4-									
201515 150615 130115 101815 010915 051015 021115 301	115 BUDIE FOUR DUDE TODIE BOME POLIE	-30010 - 1107110 BEDET	spale salore allole allole allole	61 ²⁰⁶ 230 ¹¹¹ 20 ⁰²⁰	2 200311 110411 150511	Deer, Petri, Please, 9	part orton' soron' ri	LIN BRAN DOMS BOAR	0 190318 190018 190518
Performance Evolution (Peak Luminosity)							Exp	ort to CSV Download	Undo Zoom Hide
		• ATLAS	S • ALICE • CMS	LHCb					
7.00e+5 6.00e+5									
원 2.00e+5- 1.00e+5-	•								
0.00	215 -110110 BORING UIDONG PROMISE DEPUS	5 210616 250116 220816	180000 THONG THING THING	BADIN' BEDON' BE	1.001 03041 010511 29091	1 260601 240711 210801	180911 181011 131111	LIAAAT BOULS BOARS O	202118 020418 2010418 20105

- Run 2 is almost over and both experiments have collected 100 inverse fb so far
- no signs of new physics
- BSM studies are one of the main tasks at the LHC

*Only a selection of the available mass limits on new states or phenomena is shown †Small-radius (large-radius) jets are denoted by the letter j (J). •

*Only a selection of the available lifetime limits on new states is shown.

Only a selection of the available lifetime limits on new states is shown.

analysis strategies

- searches are continuously becoming more complex
- in 2010 simple cut and count searches with a few SR
- now, searches are extremely intricate with very advanced analysis techniques such as mT2 type variables, jet substructures, BDT, NN and so on
- focus on non standard signatures like LLP searches
- hundreds to thousands of complex SR

H. Murayama

however, do we really cover all models?

experimentalists have interpreted results in terms of popular BSM, Less complete Dipole Interactions simplified "Sketches of models" More complete Dark Matter Dark models **Effective Field Theories** Photon Minimal **Supersymmetric** Z' boson Standard Model Simplified and Dark Matter Models Contact Interactions EFT Complete Higgs Dark Matter "Squarks" Portal **Models** Universal Extra Dimensions Little Higgs 1506.03116

- the limits shown by ATLAS and CMS depend on many assumptions
 - particle content
 - couplings
 - mass hierarchy
- production modes, decay channels and branching ratios can change drastically

drastic changes of limits...

...another example

- simplified model limits are too strong/optimistic
- simplified model signatures cannot cover a complete model.
- we want to test all possible models and their signatures
- but how can phenomenologists (re)interpret experimental results?

we could ask the experimentalists

we could ask the experimentalists

probable answer: no

we could ask the experimentalists

we make our own reinterpretation of the LHC data

this is already a formidable task!

... and super time consuming and extremely boring

our idea

provide your Lagrangian and we tell you whether your BSM is allowed

how?

recasting based on MC simulation

simplified model based recasting

machine learning based recasting most general approach

fast and conservative approach very fast and can test complicated models

very model specific, classifier/regressor needs to be trained on each model

← → ♂ ✿	① A https://twiki.cern.ch/twiki/bin/view/LHCPhysics/InterpretingLHCresults	E ♥ ☆ <u>↓</u> II\ E C
CERN		Jump Search O LHCPhysics O All webs
🔒 Log In	TWiki > LHCPhysics Web > LHCPhysics > InterpretingLHCresults (2018-05-13, SabineKraml)	Edit Attach PDF

Forum on the Interpretation of the LHC Results for BSM studies

The quest for new physics beyond the Standard Model is arguably the driving topic for Run 2 of the LHC. Indeed, the LHC collaborations are pursuing searches for new physics in a vast variety of channels. While the collaborations typically provide themselves interpretations of their results, for instance in terms of simplified models, the full understanding of the implications of these searches requires the interpretation of the experimental results in the context of all kinds of theoretical models. This is a very active field, with close theory-experiment interaction and with several public tools being developed.

Sedit Attach PDF

With this forum, we want to provide a platform for continued discussion of topics related to the BSM (re)interpretation of LHC data, including the development of the necessary public Recasting Tools and related infrastructure.

If you have questions or want to contribute, contact Sabine Kraml, sabine.kraml@gmailNOSPAMPLEASE.com, or any of the topical contacts given below.

Meetings

Meetings of this forum

- 4th workshop ₫, 14-16 May 2018 at CERN
- 3rd workshop 2, 16-18 Oct 2017 at Fermilab
- 2nd workshop ☑, 12-14 Dec 2016 at CERN
 - Agenda
 I introduction
 I final discussion
 I WorkshopSummaryNotes
- Kick-off workshop: (Re)interpreting the results of new physics searches at the LHC @, 15-17 June 2016 at CERN
 - Agenda
 I general discussion
 I KickoffSummaryNotes

Other workshops, potentially interesting for our forum

- Searches for Long Lived particles
 2nd workshop, 17-20 Oct 2017, ICTP Trieste
- The Les Houches PhysTev2017 workshop 2 will have a strong activity on interpreting LHC results; the BSM session in LH is taking place 14-23 June 2017.
- 2nd LHC Long-Lived Particle workshop 2, CERN, 24-26 April 2017, "to address the status and future of beyond-the-Standard Model LLP searches at the ATLAS, CMS, and LHCb experiments, as well as auxiliary LHC detectors and projects".
- 6th edition of the workshop "Implications of LHCb measurements and future prospects a", CERN, 12-14 October 2016. NB participation is restricted to the members of the LHCb Collaboration, and of interested theorists.

Mailing list

- CERN e-group: info-LHC-interpretation@cernNOSPAMPLEASE.ch
- To subscribe, go to https://simba3.web.cern.ch/simba3/SelfSubscription.aspx?groupName=info-Ihc-interpretation

Steering group

The steering group comprises a representative of each of the public recasting tools as well as a couple of individual LHC physicists. Current members are:

Jon Butterworth, Andy Buckley, Kyle Cranmer, Daniel Dercks, Matthias Danninger, Matthew Dolan, Benjamin Fuks, Marie-Helene Genest, Ahmed Ismail, Sabine Kraml, Frank Krauss, Michael Krämer, Nazila Mahmoudi, Michelangelo Mangano, Stefano Moretti, Pat Scott, Sezen Sekmen, Wolfgang Waltenberger, Nick Wardle, Andreas Weiler.

Mailing list: : info-LHC-interpretation-organisers@cernNOSPAMPLEASE.ch

LHCPhysics.Higgs Public webs

LHCPhysics

Index

Search

Changes Notifications

Statistics Preferences

1 LHCPhysics Web 💡 Create New Topic

THC .

THC

BSN

CheckMATE group

Daniel Dercks (Hamburg University)

Nishita Desai (University of Montpellier)

Florian Domingo (IFT-CSIC, Madrid)

Lukas Heinrich (New York University)

Jong Soo Kim (University of the Witwatersrand)

Sung Hak Lim (KEK)

Krzysztof Rolbiecki (University of Warsaw)

Roberto Ruiz de Austri (IFIC, Valencia)

Liangliang Shang (Henan Normal University, Xinxiang)

Torsten Weber (RWTH Aachen)

Yuanfang Yue (Henan Normal University, Xinxiang)

Former Members

Manuel Drees

Herbi Dreiner

Jamie Tattersall

what BSM signatures are covered?

a few examples

Minimal Natural SUSY after LHC8 (1511.04461)

- 6D natural SUSY random scan
- all relevant 8 TeV searches were included
- derived mass limits for lightest stop and gluino which were not excluded

Global analysis of the pMSSM in light of the Fermi GeV excess: prospects for the LHC Run-II and astroparticle experiments (1507.07008)

- in this analysis, the Fermi excess was accommodated in the pMSSM19
- global fit taking into account all pheno constraints
- all model points were tested against 8 TeV LHC searches

a few examples

Little Higgs Model with T-Parity under 13 TeV LHC data (1801.06499)

- little Higgs models with T parity have similar final state signatures as SUSY
- the authors tested model points against all available 13 TeV searches in CM
- also discussed the HL-LHC scenario

Simplified dark matter models with two Higgs doublets: I. Pseudoscalar mediators (1701.07427)

- model was tested against future mono Z, mono H and tt + MET searches
- the authors used CM for the whole MC chain
- searches were implemented in CM

analysis preservation

- the possibility to recycle LHC searches
- ATLAS and CMS have started to study analysis preservation
- we need analysis preservation for phenomenologists
- recasting tools such as CheckMATE, MadAnalaysis and Rivet are very important for analysis preservation

reconsider the recasting chain

Lagrangian Feynman **Rules Matrix Element Parton Events Hadron Level Detector Analysis**

T=O(hours)

Model complexity

simplified models (1-3 parameters)

constrained models, e.g. mSUGRA (4-6 parameters)

general models, e.g. pMSSM (7-20 parameters)

number of parameters

with increasing complexity, a general scan of parameter space becomes impractical (curse of dimensionality)

the idea: SUSY-AI 1605.02797

 \approx 5000 predictions / CPU second

training data: ATLAS pMSSM-19 study

- ATLAS (1508.06608) performed a study on the pMSSM-19
- ATLAS considered 5x10^8 model points based on 1206.4321
- 310,327 model points satisfy all theoretical and experimental constraints

Parameter	Description	Scanned range			
$m_{ ilde{L}_1}$	$m_{\tilde{L}_1}$ 1 st /2 nd gen. SU(2) doublet soft breaking slepton mass				
$m_{ ilde{E}_1}$	$m_{\tilde{E}_1}$ 1 st /2 nd gen. $SU(2)$ singlet soft breaking slepton mass				
$m_{ ilde{L}_3}$	$3^{\rm rd}$ gen. $SU(2)$ doublet soft breaking slepton mass	$[90~{\rm GeV},4~{\rm TeV}]$			
$m_{ ilde{E}_3}$	$3^{\rm rd}$ gen. $SU(2)$ singlet soft breaking slepton mass	$[90~{\rm GeV},4~{\rm TeV}]$			
$m_{ ilde{Q}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ doublet soft breaking squark mass	$[200~{\rm GeV},4~{\rm TeV}]$			
$m_{ ilde U_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ singlet soft breaking squark mass	$[200~{\rm GeV},4~{\rm TeV}]$			
$m_{ ilde{D}_1}$	$1^{\rm st}/2^{\rm nd}$ gen. $SU(2)$ singlet soft breaking squark mass	$[200~{\rm GeV},4~{\rm TeV}]$			
$m_{ ilde{Q}_3}$	$3^{\rm rd}$ gen. $SU(2)$ doublet soft breaking squark mass	$[100~{\rm GeV},4~{\rm TeV}]$			
$m_{ ilde U_3}$	$\begin{array}{c c} m_{\tilde{U}_3} & 3^{\rm rd} \ {\rm gen.} \ SU(2) \ {\rm singlet} \ {\rm soft} \ {\rm breaking} \ {\rm squark} \ {\rm mass} \\ \hline m_{\tilde{D}_3} & 3^{\rm rd} \ {\rm gen.} \ SU(2) \ {\rm singlet} \ {\rm soft} \ {\rm breaking} \ {\rm squark} \ {\rm mass} \\ \hline A_t & {\rm Stop} \ {\rm trilinear} \ {\rm coupling} \\ \hline A_b & {\rm Sbottom} \ {\rm trilinear} \ {\rm coupling} \\ \hline A_{\tau} & {\rm Stau} \ {\rm trilinear} \ {\rm coupling} \\ \end{array}$				
$m_{ ilde{D}_3}$					
A_t					
A_b					
$A_{ au}$					
$ \mu $	Higgsino mass parameter	$[80~{\rm GeV},4~{\rm TeV}]$			
$ M_1 $					
$ M_2 $					
M_3					
M_A	M _A Pseudoscalar Higgs mass				
aneta	$\tan \beta$ Ratio of vacuum expectation values				

pMSSM-19 and ATLAS

use training data to learn classification

it learns a confidence level of its classification using training data

ratio of majority class per bin

Performance of SUSY-AI

Performance of SUSY-AI

13 TeV constraints

Analysis	All LSPs	Bino	Wino	Higgsino
2-6 jets [1]	12.6%	17.2%	10.8%	10.1%
7-10 jets [2]	0.6%	0.5%	0.5%	0.7%
1-lepton [3]	1.0%	0.8%	1.1%	1.1%
Multi-b [4]	4.2%	3.0%	4.0%	5.2%
SS/3L [5]	0.5%	0.1%	1.6%	0.1%
Monojet [6]	1.3%	3.3%	0.2%	0.2%
All analyses	15.7%	18.8%	14.9%	13.8%

T=O(ms)

	Lagrangian
	Feynman Rules
	Matrix Element
hours)	Parton Events
T=0(Hadron Level
	Detector
	Analysis

SUSY-AI Online

SUSY-AI VERSION 2.0.5

S. Caron, J.S. Kim, K. Rolbiecki, R. Ruiz de Austri and B. Stienen, The BSM-AI project: SUSY-AI - Generalizing LHC limits on Supersymmetry with Machine Learning [arXiv:1605.02797]

SUSY-AI is a machine learning tool that is able to provide in a fraction of a second the exclusion of a pMSSM (sub)model point. This website provides a simple online interface for quick determination of exclusion of a model point using the results of ATLAS Run-I (8TeV) and ATLAS Run-II (13TeV). The papers associated with this data can be found here.

The full version of SUSY-AI is faster and can provide predicions for multiple modelpoints at the same time. It is under continuing active development and can be downloaded from the hepforge project page.

Download SUSY-AI

If you use SUSY-AI in your scientific work, don't forget to cite us.

More about SUSY-AI Online

Direct parameter input

Upload .slha file

Slide the parameters to the requested values or click 'set value' to set a variable manually. Prediction can only be performed if all parameters have been set. More information about the parameters (what they are and where they can be found in .slha files) can be found here.

M1	set value	M2	set value	M3	set value	mL1	set value
mL3	set value	mE1	set value	mE3	set value	mQ1	set value
mQ3	set value	mU1	set value	mU3	set value	mD1	set value
mD3	set value	At	set value	Ab	set value	Atau	set value
mu	set value	MA^2	set value	tan(beta)	set value		

Enter all parameters How to ...

CL 0.0 0.68 0.90 0.95 0.98 0.99

Predict

Upload a file or enter a parameter set above to start predicting

SUSY-AI and SUSY-AI Online were developed by S. Caron, J.S. Kim, K. Rolbiecki, R. Ruiz de Austri and B. Stienen. If you encounter any problems, don't hesitate to contact us! SUSY-AI and SUSY-AI Online (c) 2016

www.susy-ai.org

- with ML we go from discrete data to a continuous function
- we can reconstruct the exclusion boundary of the pMSSM19
- however, in some regions SUSY-AI is less certain

- we want to generate more points in those regions (active learning)
- moreover, we want to sample points which are not excluded with large "certainty"
- currently we are working on other classifiers in the BSM-Al project

we used machine learning to test models with classification methods

we also want to predict the likelihood

- LHC constraints cannot easily be included in the likelihood calculation
- LHC computations are prohibitively expensive
- e.g., the ATLAS electroweakino paper had 500 millions benchmark points -> they approximated the likelihood function
- in codes like Mastercode the LHC likelihood calculation is the most time consuming part

- we have to perform the LHC step for each benchmark point
- in particular, the MC event generation takes a lot of time
- is there a way to improve the performance?

- we replace the expensive computations with ML techniques
- the efficiencies and the production cross sections are predicted in supervised ML

DM study

1712.04793

4D simplified AV DM scenario

- we assume a future excess with 100 inverse fb of data
- extrapolate current BKG estimates for all SR to the higher luminosity
- projected sensitivity depends on uncertainty of predicted SM rates
- recent ATLAS monojet searches have reduced systematic errors from 5% to 3%
- we consider two scenarios: systematic error ~ 1% & 3%

Training

- we generated monojet signals
- we use distributed Gaussian Processes to predict the SR efficiencies
- NN are trained on the NLO XS
- dijet classifier

Results

Natural SUSY

1611.02704

- 6D natural SUSY
- we assumed a excess in the HL-LHC phase
- calculated efficiencies in 0L and 1L stop searches defined in ATLAS-PUB-2013-011
- stops decay to tops, b, W/Z or Higgs and LSP

Natural SUSY

- we used Gaussian Processes
- we had 18647 models and used 16k for training
- O(10) min to train per SR
- 0.06 sec/prediction
- 154k likelihood evaluation

Summary

- reinterpretation tools of LHC results are very important to make LHC data more accessible to pheno community
- allows to test any BSM
- analysis preservation
- ATOM, Contur, <u>CheckMATE</u>, ColliderBit, Fastlim, MadAnalysis, Rivet, SModelS
- high dimensional parameter fits are computationally expensive
- ML algorithms allows for fast global fits
- SCYNet, <u>SUSY-AI</u>

Backup

Madgraph+Pythia 8

[Parameters] Name: madgraph SLHAFile: point.slha Analyses: 8TeV RandomSeed: 10

[squ_asq] MGCommand: import model mssm; define sq = ul ur sl sr dl dr cl cr; define sq~ = ul~ ur~ sl~ sr~ dl~ dr~ cl~ cr~; generate p p > sq sq~

KFactor: 1.96 MaxEvents: 1000

testparam_madgraph.dat

13 TeV analyses

#Name	NSR	Description	Lumi
atlas_1604_01306	1	photon + MET search at 13 TeV	3.2
atlas_1605_09318	8	>= 3 b-jets + 0-1 lepton + Etmiss	3.3
atlas_1609_01599	9	ttV cross section measurement at 13 TeV	3.2
atlas_conf_2015_082	1	leptonic Z + jets + Etmiss	3.2
atlas_conf_2016_013	10	4 top quark (1 lepton + jets, vector like quark search)	3.2
atlas_1606_09150	1	diphotons and met	3.2
atlas_conf_2016_050	5	1-lepton + jets + etmiss (stop)	13.3
atlas_conf_2016_054	10	1-lepton + jets + etmiss (squarks and gluino)	14.8
atlas_conf_2016_076	6	2 leptons + jets + etmiss	13.3
atlas_conf_2016_096	8	2-3 leptons + etmiss (electroweakino)	13.3
atlas_conf_2016_066	2	search for photons, jets and met	13.3
atlas_conf_2017_022	24	squarks and gluinos, 0 lepton, 2-6 jets	36.1
atlas_conf_2017_019	6	search for stops with Higgs or Z	36.1
atlas_conf_2017_060	20	monojet search	36.1
atlas_conf_2017_039	37	ATLAS, 2-3 leptons + etmiss, 13 TeV, 37 invfb	36.1
atlas_conf_2017_040	2	Etmiss + Z, 13 TeV	36.1
atlas_1704_03848	5	monophoton dark matter search	36.1
atlas_1710_11412	1	Search for dark matter produced in association with b or top quarks	36.1
atlas_1712_08119	39	electroweakinos search with soft leptons	36.1
atlas_1712_02332	24	squarks and gluinos, 0 lepton, 2-6 jets	36.1
atlas_1709_04183	14	stop pair production, 0 leptons	36.1
atlas_1802_03158	7	search for GMSB with photons	36.1
atlas_1708_07875	2	electroweakino search with taus and MET	36.1
atlas_1706_03731	19	same-sign or 3 leptons RPC and RPV SUSY	36.1
atlas_1804_03602	6	search for supersymmetry in events with four or more leptons	36.1

13 TeV analyses

 we have a small selection of implemented CMS 13 TeV analyses

#Name	NSR	Description	Lumi
cms_sus_15_011	47	CMS, 13 TeV, 2 leptons + jets + MET	2.2
cms_sus_16_046	4	one photon and missing transverse momentum	35.9
cms_sus_16_039	158	electrowekinos in multilepton final state	35.9
cms_sus_16_025	14	electroweakino and stop compressed spectra	12.9

 for the first time, we have started to consider a search based on jet substructure techniques and a LLP search

#Name	NSR	Description	Lumi
atlas_1801_08769		Search for light resonances decaying to boosted quark pairs and produced in association with a photon or a jet	36.1
atlas_1712_02118	2	Search for long-lived charginos based on a disappearing-track signature	36.1

Gaussian Processes

- a collection of random variables which have a joint Gaussian distribution
- the random variables represent function values f(x)
- f(x)~GP(m(x),k(x, x'))
- we can predict p(f(x')|x',y, x) for some given observation y=f(x)+ε
- non parametric: no functional form assumptions
- GP defines prior of functions
- produces posteriors

Figure 1.1: Panel (a) shows four samples drawn from the prior distribution. Panel (b) shows the situation after two datapoints have been observed. The mean prediction is shown as the solid line and four samples from the posterior are shown as dashed lines. In both plots the shaded region denotes twice the standard deviation at each input value x.

Limited training data

Limited training data

Scalar Benchmark Point

Scalar Benchmark Point

Scalar Benchmark Point

Scalar BP Results

