$\mathcal{T}he \ \mathcal{CP}-Violationg \ 2HDM \ in \ \mathcal{L}ight \ of \ a \ \mathcal{S}trong \ \mathcal{F}irst \ \mathcal{O}rder \\ \mathcal{P}hase \ \mathcal{T}ransition \ - \ \mathcal{I}mplications \ for \ \mathcal{H}iggs \ \mathcal{P}hysics$

Milada Margarete Mühlleitner (KIT)

Planck 2018 Bonn, 21-25 May 2018

\mathcal{O} utline

- \diamond Introduction
- \diamond The C2HDM
- \diamond Results
- \diamond Conclusions

$\mathcal{I}ntroduction$

\mathcal{M} otivation

• Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition (EWPT) [Riemer-Sorensen, Jenssen '17]

$$5.8 \cdot 10^{-10} < \frac{n_B - n_{\bar{B}}}{n_{\gamma}} < 6.6 \cdot 10^{-10}$$

• Sakharov Conditions:

* (i) B number violaton (sphaleron processes)

- * (ii) C and CP violation
- * (iii) Departure from thermal equilibrium

[Sakharov '67]

\mathcal{B} aryogenesis in a \mathcal{N} utshell

M.M.Mühlleitner, 23 May 2018, Planck 2018, Bonn

[adapted from Morrissey, Ramsey-Musolf '12]

\mathcal{M} otivation

• Electroweak Baryogenesis (EWBG): generation of the observed baryon-antibaryon asymmetry in the electroweak phase transition (EWPT) [Riemer-Sorensen, Jenssen '17]

$$5.8 \cdot 10^{-10} < \frac{n_B - n_{\bar{B}}}{n_{\gamma}} < 6.6 \cdot 10^{-10}$$

• Sakharov Conditions:

- * (i) B number violaton (sphaleron processes)
- * (ii) C and CP violation
- * (*iii*) Departure from thermal equilibrium
- Additional constraint: EW phase transition must be strong first order PT [Quiros '94; Moore '99]

$$\xi_c \equiv \frac{\langle \Phi_c \rangle}{T_c} \ge 1$$

 $\langle \Phi_c \rangle$ and T_c field configuration and temperature at phase transition

M.M.Mühlleitner, 23 May 2018, Planck 2018, Bonn

[Sakharov '67]

$\mathcal{S}trong \ \mathcal{F}irst \ \mathcal{O}rder \ \mathcal{E}lectroweak \ \mathcal{P}hase \ \mathcal{T}ransition$

M.M.Mühlleitner, 23 May 2018, Planck 2018, Bonn

• Electroweak Baryogenesis in the Standard Model:

- * all ingredients required for EWBG contained in the SM, but
- $*\,$ EW phase transition of strong first order only if $m_H \lesssim 70~{\rm GeV}$

[Bochkarev,Shaposhnikov '87; Kajantje eal '95; Fodor eal '96]

* CP violation induced by CKM phase not sufficient to generate large enough chiral asymmetries [Gavela eal '93,'94; Huet,Sather '94]

 \Rightarrow consider extended Higgs sectors

• Extended Higgs sectors:

- * additional scalar degrees of freedom can strengthen the PT:
 - additional massive particles
 - enhanced Higgs self-couplings
- * additional sources of CP violation

\mathcal{T} he \mathcal{C} 2HDM

Baryogensis in the C2HDM

• EWPT in the 2HDM:

[Bochkarev eal; McLerran eal; Turok eal; Cohen eal; Nelson eal; Funakubo eal; Davies eal; Cline eal; Dorsch eal; Fromme eal; Haarr eal; Basler eal; Gorda eal; Laine,Rummukainen; Bernon eal; Andersen eal]

• This talk: based on

2HDM: [Basler,Krause,MM,Wittbrodt,Wlotzka, JHEP 1702 (2017) 121] **C2HDM**: [Basler,MM,Wittbrodt, JHEP 1803 (2018) 061]

• Features:

- * Inclusion of theoretical and newest experimental constraints
- * 'On-shell' renormalization
- * Inclusion of CP violation investigation of possible spontaneously generated CP violation
- * Detailed analysis of implications on collider observables

$\mathcal{T}he \ \mathcal{T}ree\text{-}\mathcal{L}evel \ \mathcal{H}iggs \ \mathcal{P}otential$

• The tree-level Higgs potential:

$$\begin{split} V_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \,. \end{split}$$

• CP Violation: m_{12}^2 , λ_5 can be complex (all others real); $m_{12}^2 \neq \lambda_5 \rightsquigarrow$ CP violation

• Higgs fields after EWSB: at $T \neq 0$

$$\Phi_{1} = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_{1} + i\eta_{1} \\ \omega_{1} + \zeta_{1} + i\psi_{1} \end{pmatrix}$$
$$\Phi_{2} = \frac{1}{\sqrt{2}} \begin{pmatrix} \omega_{\mathsf{CB}} + \rho_{2} + i\eta_{2} \\ \omega_{2} + i\omega_{\mathsf{CP}} + \zeta_{2} + i\psi_{2} \end{pmatrix}$$

includes possibility of (unphysical) charge breaking ω_{CB} and CP breaking ω_{CP} minima

$\mathcal{T}he \ \mathcal{T}ree\text{-}\mathcal{L}evel \ \mathcal{H}iggs \ \mathcal{P}otential$

• The tree-level Higgs potential:

$$\begin{split} V_{\text{tree}} &= m_{11}^2 \Phi_1^{\dagger} \Phi_1 + m_{22}^2 \Phi_2^{\dagger} \Phi_2 - \left[m_{12}^2 \Phi_1^{\dagger} \Phi_2 + \text{h.c.} \right] + \frac{1}{2} \lambda_1 (\Phi_1^{\dagger} \Phi_1)^2 + \frac{1}{2} \lambda_2 (\Phi_2^{\dagger} \Phi_2)^2 \\ &+ \lambda_3 (\Phi_1^{\dagger} \Phi_1) (\Phi_2^{\dagger} \Phi_2) + \lambda_4 (\Phi_1^{\dagger} \Phi_2) (\Phi_2^{\dagger} \Phi_1) + \left[\frac{1}{2} \lambda_5 (\Phi_1^{\dagger} \Phi_2)^2 + \text{h.c.} \right] \,. \end{split}$$

• CP Violation: m_{12}^2 , λ_5 can be complex (all others real); $m_{12}^2 \neq \lambda_5 \rightsquigarrow$ CP violation

• Higgs fields after EWSB: at T = 0

$$\Phi_1 = \frac{1}{\sqrt{2}} \begin{pmatrix} \rho_1 + \mathrm{i}\eta_1 \\ v_1 + \zeta_1 + \mathrm{i}\psi_1 \end{pmatrix}$$
$$\Phi_2 = \frac{1}{\sqrt{2}} \begin{pmatrix} +\rho_2 + \mathrm{i}\eta_2 \\ v_2 + \zeta_2 + \mathrm{i}\psi_2 \end{pmatrix}$$

 $T = 0: \ \omega_{\mathsf{CP}}, \omega_{\mathsf{CB}} \to 0, \ \omega_1 \to v_1, \ \omega_2 \to v_2 \qquad v_1^2 + v_2^2 = (246 \text{ GeV})^2, \ \tan \beta \equiv \frac{v_2}{v_1}$

$\mathcal{T}he \ \mathcal{T}ree\text{-}\mathcal{L}evel \ \mathcal{H}iggs \ \mathcal{P}otential$

• Particle content:

- 3 neutral CP-mixing Higgs bosons H_1, H_2, H_3
- 1 charged Higgs pair H^{\pm}
- Flavour-Changing Neutral Currents (FCNC) at tree-level: forbidden by \mathbb{Z}_2 symmetry

$$\Phi_1 \to \Phi_1 , \qquad \Phi_2 \to -\Phi_2 .$$

- \rightsquigarrow 4 types of 2HDM
- Classification of the Yukawa sector:

	Type I	Type II	Lepton-Specific	Flipped
Up-type quarks	Φ_2	Φ_2	Φ_2	Φ_2
Down-type quarks	Φ_2	Φ_1	Φ_2	Φ_1
Leptons	Φ_2	Φ_1	Φ_1	Φ_2

$\mathcal{T}he \ \mathcal{L}oop\text{-}\mathcal{C}orrected \ \mathcal{E}ffective \ \mathcal{P}otential \ at \ \mathcal{F}inite \ \mathcal{T}emperature$

• Investigate phase transition: determine

$$\xi_c \equiv \frac{\langle \Phi_c \rangle}{T_c}$$

for C2HDM taking into account all theoretical and experimental constraints

• Effective potential at finite temperature:

$$V_{\text{eff}}^{(1)}(\vec{\omega}, \mathbf{T}) = V_{\text{tree}}(\vec{\omega}) + V_{\text{CW}}(\vec{\omega}) + V_{\text{CT}}(\vec{\omega}) + V_{T}(\vec{\omega}, \mathbf{T})$$

• T = 0 **1-loop contribution**: Coleman-Weinberg contribution

[Coleman,Weinberg '73]

$$V_{\rm CW} = \sum_{i} \frac{n_i}{64\pi^2} (-1)^{2s_i} m_i^4(\vec{\omega}) \left[\ln\left(\frac{m_i^2(\vec{\omega})}{\mu^2}\right) - c_i \right]$$

 n_i number of degrees of freedom

 μ renormalization scale, set to VEV $v\approx 246~{\rm GeV}$

 $\overline{\text{MS}}$ renormalization constants $c_i = 5/6$ for bosons, $c_i = 3/2$ otherwise

$\mathcal{T}he \ \mathcal{L}oop\ \mathcal{C}orrected \ \mathcal{E}ffective \ \mathcal{P}otential \ at \ \mathcal{F}inite \ \mathcal{T}emperature$

• The counterterm potential:

Choose V_{CT} such that the minimum, the masses and the mixing angles at T = 0remain the same at one-loop level [Basler,Krause,MM,Wittbrodt,Wlotzka '16]

$$0 = (\partial_{\phi_i} V_{\mathsf{CT}} + \partial_{\phi_i} V_{\mathsf{CW}})|_{\langle \phi \rangle_{T=0}}$$

$$0 = (\partial_{\phi_i} \partial_{\phi_j} V_{\mathsf{CT}} + \partial_{\phi_i} \partial_{\phi_j} V_{\mathsf{CW}})|_{\langle \phi \rangle_{T=0}}$$

• $T \neq 0$ contribution:

- Thermal loops (fermionic (+) and bosonic (-) integral J_{\pm}) [Carena eal '08]

$$V_T = \sum_i n_i \frac{T^4}{2\pi^2} J_{\pm}(m_i^2(\vec{\omega})/T^2)$$

- Thermal mass corrections

[Arnold, Espinosa '94]

$$J_{-}\left(\frac{m_i^2}{T^2}\right) \to J_{-}\left(\frac{m_i^2}{T^2}\right) - \frac{\pi}{6}(\overline{m}_i^3 - m_i^3) , \qquad i = W_L^{\pm}, Z_L, \gamma_L, \Phi^0, \Phi^{\pm}$$

with the thermal masses \overline{m}_i

\mathcal{P} arameter \mathcal{S} can

• Scan over parameter space:

with ScannerS. checks for: [Coimbra, Sampaio, Santos '13; Ferreira, Guedes, Sampaio, Santos '14]

• Theoretical constraints:

boundedness from below, tree-level perturbative unitarity, EW vacuum is global minimum of tree-level potential at T=0

• Experimental constraints::

- * S, T, U parameters for EW precision observables * $R_b = \Gamma(Z \to b\bar{b})/\Gamma(Z \to \text{hadrons})$ and $B \to X_s \gamma$ [Haber,Logan '99;Deschamps eal '09;
- * Higgs exclusion bounds by HiggsBounds
- * Higgs rates checked via SUSHI and C2HDM_HDECAY
- * Electric dipole moment of the electron

Calculation of the global electroweak minimum: as function of T to determine $\xi_c \leftarrow$ use of code BSMPT

M.M.Mühlleitner, 23 May 2018, Planck 2018, Bonn

[Baak eal '14]

Mahmoudi, Stal '09; Steinhauser eal '17]

[Bechtle eal '08,'11,'13]

[Harlander eal; Fontes eal]

[The ACME Collaboration]

[Basler,MM '18]

BSMPT

• **BSMPT** - Beyond the Standard Model Phase Transitions:

[Basler,MM '18]

A C++ tool for the electroweak phase transition in extended Higgs sectors Computation of loop-corrected effective potential at $T \neq 0$ including the thermal masses Renormalization based on physical conditions (see previous slides)

• Features:

- * Computation of $\xi_c = v_c/T_c$
- * Calculation of evolution of the VEV(s) with T
- * Calculation of the global minimum of the 1-loop-corrected potential at T=0
- * Computation of the loop-corrected trilinear Higgs self-couplings in the "on-shell" scheme
- **Models:** generic code allows for easy implementation of new models implemented models: 2HDM, C2HDM, N2HDM
- Webpage: https://github.com/phbasler/BSMPT

M.M.Mühlleitner, 23 May 2018, Planck 2018, Bonn

\mathcal{R} esults

\mathcal{E} volution of the \mathcal{V} acuum

M.M.Mühlleitner, 23 May 2018, Planck 2018, Bonn

* $\mu_F = \sigma_{C2HDM}(ggF + bbF)/\sigma_{SM}(ggF)$ and $\mu_V = \sigma_{C2HDM}(VBF + VH)/\sigma_{SM}(VBF + VH)$ * Signal rates: $(H_i = h_{125})$

$$\mu_{xx} = \mu_F \times \frac{\mathsf{BR}_{\mathsf{C2HDM}}(H_i \to xx)}{\mathsf{BR}_{\mathsf{SM}}(H_i \to xx)}$$

* Signal rates: $(H_i = h_{125})$

$$\mu_{xx} = \mu_F \times \frac{\mathsf{BR}_{\mathsf{C2HDM}}(H_i \to xx)}{\mathsf{BR}_{\mathsf{SM}}(H_i \to xx)}$$

$\mathcal{E} \textit{ffects on the } \mathcal{T} \textit{rilinear } \mathcal{H} \textit{iggs } \mathcal{S} \textit{elf-Coupling}$

* Plots include unitarity constraints

*
$$1.1 \lesssim \left| \frac{\lambda_{hhh}^{\text{C2HDM,NLO}}}{\lambda_{hhh}^{\text{SM,NLO}}} \right| \lesssim 2.9$$

* Most CP-violating points require
$$\frac{\langle h \rangle^2}{v^2} \gtrsim 0.95$$

* CP-odd part of
$$h \lesssim 24\% \xrightarrow{\text{EWPT}} \sim 2.5\%$$

$m_{H_1} \; [{\rm GeV}]$	125.09	$BR(H_2)$	$BR(H_2 \to H_1 H_1) = 0.400$		
m_{H_2} [GeV]	291.49		$BR(H_2 o ZH_1) = 0.294$		
$m_{H^{\pm}}$ [GeV]	543.30		$BR(H_2 o WW) = 0.156$		
${\sf Re}(m_{12}^2)~[{\sf GeV}^2]$	15590	$BR(H_3)$	$BR(H_3 o ZH_2) = 0.940$		
α_1	1.366		$BR(H_3 \to t\bar{t}) = 0.056$		
α_2	-0.028		$BR(H_3 \rightarrow WW) = 0.002$		
$lpha_3$	0.086	$BR(H^{\pm})$	$BR(H^{\pm} \rightarrow WH_2) = 0.943$		
aneta	5.08		$BR(H^+ o t ar{b}){=}0.054$		
m_{H_3} [GeV]	548.97		$BR(H^{\pm} \rightarrow WH_1) = 0.002$		
ξ_c	1.52				
R_{13}^2	$7.641 \cdot 10^{-4}$	Combination of rates to identify CP violation:			
R_{22}^2	$7.436 \cdot 10^{-3}$	\ast type I, H_1 SM-like, mostly CP-even			
R_{33}^2	0.992	* $H_2 \rightarrow ZH_1 \wedge H_2 \rightarrow WW$			

Benchmark Point

see also, [Branco eal '99;Fontes eal '15,King eal '15]

forbidden w/o CP violation

M.M.Mühlleitner, 23 May 2018, Planck 2018, Bonn

217.95

 $\sigma_{hh}^{\rm NLO}$ [fb]

\mathcal{C} onclusions

- * Detailed phenomenological analysis taking into account recent bounds and constraints
- * Strong first order EWPT possible in the C2DHM
- * Overall $\xi_c = v_c/T_c$ smaller than in CP-conserving 2HDM
- * Explicit CP violation at T = 0 induces spontaneous CP violation at the EWPT
- * Trilinear Higgs self-coupling larger than in SM
- * $\mu\text{-values}$ of SM-like Higgs boson in C2HDM with strong PT more restricted than in CP-conserving 2HDM
- * Like in 2HDM, strong PT prefers hierarchy with mass gap between the non-SM-like Higgs bosons, but: also approximately mass degenerate scenarios possible

Successful link between cosmology and collider phenomenology

$\mathcal{T}hank \ \mathcal{Y}ou \ \mathcal{F}or \ \mathcal{Y}our \ \mathcal{A}ttention!$

• Tadpole conditions:

$$\begin{split} m_{11}^2 &= & \operatorname{Re}(m_{12}^2) \frac{v_2}{v_1} - \frac{v_1^2}{2} \lambda_1 - \frac{v_2^2}{2} \lambda_{345} \\ m_{22}^2 &= & \operatorname{Re}(m_{12}^2) \frac{v_1}{v_2} - \frac{v_2^2}{2} \lambda_2 - \frac{v_1^2}{2} \lambda_{345} \\ 2 \operatorname{Im}(m_{12}^2) &= & v_1 v_2 \operatorname{Im}(\lambda_5) \;, \end{split}$$

fix one of the parameters

• Input parameters:

 $v , t_{\beta} , \alpha_{1,2,3} , m_{H_i} , m_{H_j} , m_{H^{\pm}} \text{ and } \operatorname{Re}(m_{12}^2) .$

Spontaneous Generation of a CP-Violating \mathcal{P} hase

Type I, $H_1 = h$

[Basler, MM, Wittbrodt '17]

$\mathcal{M}ass \ \mathcal{D}ifferences$

left: all points passing the constraints; middle: all points with a strong PT and CP conservation; right: all points with $\xi_c > 1$ and explicit CP violation

Corrections to the \mathcal{T} rilinear \mathcal{H} iggs Self-Coupling

Type I, $H_1 = h$

[Basler,MM,Wittbrodt '17]

red triangle: SM point; coloured points $\xi_c > 1$

Spontaneous Generation of a CP-Violating $\mathcal{P}hase$

Type II, $H_1 = h$

[Basler, MM, Wittbrodt '17]

$\mathcal{M}ass \ \mathcal{D}ifferences$

[Basler, MM, Wittbrodt '17]

left: all points passing the constraints; middle: all points with a strong PT and CP conservation; right: all points with $\xi_c > 1$ and explicit CP violation

* $\mu_F = \sigma_{\text{C2HDM}}(ggF + bbF) / \sigma_{\text{SM}}(ggF)$ and $\mu_V = \sigma_{\text{C2HDM}}(VBF + VH) / \sigma_{\text{SM}}(VBF + VH)$

* Signal rates: $(H_i = h_{125})$

$$\mu_{xx} = \mu_F \times \frac{\mathsf{BR}_{\mathsf{C2HDM}}(H_i \to xx)}{\mathsf{BR}_{\mathsf{SM}}(H_i \to xx)}$$

* Signal rates: $(H_i = h_{125})$

$$\mu_{xx} = \mu_F \times \frac{\mathsf{BR}_{\mathsf{C2HDM}}(H_i \to xx)}{\mathsf{BR}_{\mathsf{SM}}(H_i \to xx)}$$

$\mathcal The\ \mathcal Different\ \mathcal Contributions\ to\ the\ \mathcal EDM$

[Fontes,MM,Romao,Santos,Silva,Wittbrodt '17]

