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Introduction

In the absence of concrete signs of NP, EFTs are a powerfull
toolbox to describe NP far below its mass scale.

For the construction of an EFT, we need the field content, the
symmetries and a power-counting rule.

In the case of the SMEFT, the Lagrangian is expanded in
inverse powers of the NP mass scale Λ.
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Introduction

The search for NP in tails of distributions is complicated by the
fact that the momentum transfer is not constant: EFT effects
grow ∼ E

Λ .

One approach is to discard any data with a partonic
center-of-mass energy greater than the cutoff scale.

Englert and Spannowsky (2015); Contino et al. (2016); Farina et al. (2017); Alioli et al. (2017)

We propose an alternative approach and constrain SMEFT
effects in dijet production at the LHC.

“Consistent Searches for SMEFT Effects in Non-Resonant Dijet
Events”, Alte, König and Shepherd, JHEP 1801 (2018) 094,
arXiv:1711.07484.
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Dijet Production in the SMEFT



Dijet Production in the SMEFT

In the SMEFT, the SM Lagrangian is supplemented by local,
higher-dimensional operators built out of SM fields and
respecting the SM gauge group.

LSMEFT = LSM + L(5) + L(6) + L(7) + L(8) + . . . ,

where

L(i) =
Ni∑

k=1

c(i)
k

Λi−4 Q(i)
k .

Weinberg (1979); Wilczek and Zee (1979); Buchmueller and Wyler (1986); Grzadkowski et al. (2010); Abbott and
Wise (1980); Lehman (2014); Lehman and Martin (2016); ...

The leading (non-trivial) contribution to dijet production arises
from dimension-six operators.
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Dijet Production in the SMEFT

Different non-redundant sets of dimension-six operators exist.
However, physical results are basis independent.

We work in the “Warsaw” basis, assume baryon-number,
lepton-number and CP-conservation. The contributing
operators are:

Q(1)
qq (q̄pγµqr ) (q̄sγ

µqt) Q(3)
qq

(
q̄pγµτ

Iqr
) (

q̄sγ
µτ Iqt

)
Quu (ūpγµur ) (ūsγ

µut) Qdd
(
d̄pγµdr

) (
d̄sγ

µdt
)

* Q(1)
ud (ūpγµur )

(
d̄sγ

µdt
)

Q(8)
ud

(
ūpγµT Aur

) (
d̄sγ

µT Adt
)

* Q(1)
qu (q̄pγµqr ) (ūsγ

µut) Q(8)
qu

(
q̄pγµT Aqr

) (
ūsγ

µT Aut
)

* Q(1)
qd (q̄pγµqr )

(
d̄sγ

µdt
)

Q(8)
qd

(
q̄pγµT Aqr

) (
d̄sγ

µT Adt
)

* QG f ABC GAν
µ GBρ

ν GCµ
ρ

no interference
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Consistency for the EFT Analysis

The dijet cross section in the SMEFT can be written as

σdijet = σSM + 1
Λ2 σdim6−SM + 1

Λ4 σdim6 + . . . .

However, the contribution arising from the interference of
dimension-eight operators with the SM is of the same order as
the dimension-six squared piece.

The options are
• Include the missing contribution
• Truncate at the interference of dimension-six with the SM

Many EFT analyses pursue neither of the two options.
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Our Approach

We recast a recent CMS analysis CMS (2017), where
• the dimension-six squared piece is taken into account.
• the single-operator case is considered.
• bounds on the NP scale Λ are derived.

We truncate at the dimension-six interference term.

We introduce a theory error to account for terms of higher
order in the expansion in 1

Λ2 .

We identify the two distinct linear combinations of
dimension-six operators which contribute to the signal.

We derive bounds for both the fixed-Wilson and the fixed-scale
case.
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The Multioperator Case

The search analyses the cross section differential in the dijet
invariant mass mjj and the angular variable

χ = e|y1−y2| .

2 4 6 8 10 12 14 16

0.0

0.5

1.0

1.5

2.0

dσ
dχ

∣∣∣∣
central

∝ −
(

c(1)
qq + 0.61 c(3)

qq + 0.85 cuu + 0.15 cdd + 0.20 c(8)
ud

)
dσ
dχ

∣∣∣∣
flat
∝ −

(
c(8)

qu + 0.45c(8)
qd

)
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Searches in Normalized Angular Distributions



Reproduction of the CMS Analysis

dσ
dχ

∣∣∣∣
signal

= dσ
dχ

∣∣∣∣
SM

+ 1
Λ2

dσ
dχ

∣∣∣∣
interference

+ 1
Λ4

dσ
dχ

∣∣∣∣
BSM

+ . . .
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Signal K = 1.6

Signal CMS

SM

Bound on Λ [TeV]
CMS 11.5

K = 1.0 12.1
K = 1.3 11.4
K = 1.6 11.0

Using LO QCD Monte-Carlo samples, a Chi-Squared Fit to the
CMS data results in bounds on Λ which agree within ∼ 1 TeV
with the CMS bounds.

for validation only!

most constraining bin
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Truncation at Dimension-Six Interference

dσ
dχ
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signal
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+ 1
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dσ
dχ
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+ O
( 1

Λ4

)
∆
(

dσ
dχ

)∣∣∣∣
theo

= 1
Λ4

dσ
dχ

∣∣∣∣
BSM

Including the new theory error, we find no bounds on Λ.
χ

not constraining
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Searches in Unnormalized Distributions



Signal and Theory Error

We use the signal

σsignal = σSM + 1
Λ2 σinterference ,

where we switch on the operators Q(1)
qq and Q(8)

qu .

Our theory error models both the dimension-six squared piece
and the dimension-eight-interference piece:

∆σtheo = 1
Λ4 σdim6 ,

where we replace the squared Wilson coefficients by

∆theo,1 = max
{

c2
k ; gs c8

√
N8
}

or ∆theo,2 =
√

c4
k +

(
gs c8

√
N8
)2
.
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Searches in the Angular Spectrum

Including the theory uncertainty, the bounds weaken. Some
amount of integrated luminosity is needed to obtain bounds.

Above this integrated luminosity, we do not only find a lower
bound for Λ, but rather an excluded region.

Can we do better?
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Searches in the Dijet Invariant Mass Spectrum

The searches in the dijet invariant mass spectrum yield
bounds at lower integrated luminosity compared to the
searches in the angular spectrum.
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Conclusions

We constrain SMEFT effects in dijet production, truncating
the EFT expansion at the dimension-six interference term.

We introduce a new theory error to account for higher-order
contributions.

Two distinct linear combinations of Wilson coefficients
contribute to the angular spectra.

The searches in unnormalized mjj distributions reach higher
scales at lower integrated luminosity compared to searches in
angular spectra.
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Searches in the Dijet Invariant Mass Spectrum

Besides fixing the Wilson coefficients and fitting for the NP
scale, we can also fix the NP scale and fit for the Wilson
coefficient.

1 / 1
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