# **Consistent Searches for SMEFT Effects in Non-Resonant Dijet Events**

Stefan Alte, Johannes Gutenberg-Universität Mainz Matthias König and William Shepherd



The operation of the LHC is a success story.

The operation of the **LHC** is a **success story**.

#### However, NP has not yet been discovered.

| Status: July 2017                       |               |                       |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (C dt = 1  | 3 2 - 37 0) fb <sup>-1</sup>                                                         | Jr - 8 13 TeV      |
|-----------------------------------------|---------------|-----------------------|---------|--------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--------------------------------------------------------------------------------------|--------------------|
| Model                                   | 6.2           | Jetst                 | Entre   | (7.605 | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | J2, 01 = ( | 3.2 - 37.0/10                                                                        | Reference          |
| inouer                                  |               | outs;                 | -T      | Janto  | Link                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            |                                                                                      | Nelerence          |
| ADD 600 + 2(0                           | 94,P          | 1-41                  | 160     | 36.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7.25 %/    | # - 2                                                                                | ALAS CONF-2917-0   |
| 400.000                                 | .,            |                       |         | 00.1   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0.070      | F - SHLEND                                                                           | (70) KON7          |
| ACD BM Kish S are                       | 1.5           |                       |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 11.7.0     | and March 194                                                                        | 4144 82045         |
| ADD EH multiet                          |               | 211                   | -       | 36     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 9.55 TeV   | r - 0, Mr 3 TeV KLEH                                                                 | 1512 82585         |
| RS1 Gen -+ by                           | 2 Y           |                       | -       | 36.7   | Dece (983)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 41767      | $k(B_{12} = 0.1)$                                                                    | CEPN-EP-2017-102   |
| Dult FIS Gyr → WW → gg                  | v tex         | 1.1                   | 784     | 20.1   | 5.75 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |            | $k(\mathbf{R}_{0} = 1.0)$                                                            | ATLAS-CONF-0017-00 |
| 2UED / RPP                              | 1.6,8         | $\geq 2 \ h_i \geq 3$ | ) Yes   | 10.2   | Const Seller                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Then $(0, t)$ , $\mathcal{B}(\mathcal{A}^{(\lambda 1)} \rightarrow \mathcal{B}) = 1$ | ATLX5-CONF-2116-11 |
| 88M 2* → <i>l</i> l                     | 2 4.,4        |                       |         | 36.1   | L'exasta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.5 197    |                                                                                      | WL88-CONF-2017-02  |
| $SSM 2^* \rightarrow rr$                | 21            |                       |         | 26.1   | Crass 2.4 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                      | ATLAS-CONF-2017-05 |
| Leptophotoc 2" bb                       |               | 2.5                   |         | 0.2    | Crass 1.5 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            |                                                                                      | 9580.86794         |
| Febrobusic 5. → II                      |               | 510/511               | 12) Yes | 3.2    | 2.0 TeX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | 15m - 3%                                                                             | MU85 CONF-2016-01  |
| SSM W Ir                                | 14.4          |                       | 765     | 36.1   | N' nes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 8.1 TeV.   |                                                                                      | 1796.54796         |
| MOT W MMC The model B                   | and or, a     |                       |         | 20.1   | - maa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            | 47 - 7                                                                               | AD IN CONTINUES    |
| 1 DSM 591 15                            |               | 23.6.11               | 10.0    | 20.2   | 2.64 T                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 800        |                                                                                      | MONTH NO           |
| LINSM W <sup>2</sup> <sub>0</sub> -> ab | 04.4          | 210,1                 | - 1     | 20.3   | Winness 1.28 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                      | 1405.0586          |
| Ci anno                                 |               | - 11                  |         | 37.0   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | ALCOND. C                                                                            | (783 800/7         |
| CI//en                                  | 2             |                       |         | 740.1  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | 101 M                                                                                | AT RECTREE SHITCH  |
| Clast                                   | 255/22 44     | ration!               | 1 784   | 20.3   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 4.0 TeV    | Keel=1                                                                               | 1104.04400         |
| 4                                       |               | 1.41                  |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                      |                    |
| Heater watching (China I                | (a) 0 0, 1    | 1.22                  | res     | 00.1   | 1.5 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |            | E. 105 - 10 - 01 - 00 Cold                                                           | ADS CON-217.0      |
| When FFT (Direc D46)                    | 0.6.4         | 1.1.61                | 1 194   |        | d The Conv                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |            | min) < 150 Bell                                                                      | 1000 00000         |
|                                         |               |                       |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            | - 40                                                                                 |                    |
| Scalar LQ 1 <sup>#</sup> gen            | 2.4           | 221                   | -       | 3.2    | Q mass 1.1 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |            | $\beta = 1$                                                                          | 1685.86335         |
| Scalar Ltg 2 <sup>m</sup> gen           | 2.2           | 3.23                  |         | 362    | 12 mass 1.06 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | 3-1                                                                                  | 105.0035           |
| SCREETLD 3** Bea                        | 14.3          | 216,20                | 1 166   | 20.3   | 10 Maria 643 DAV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                      | 1580.84735         |
| $VLQ TT \rightarrow He + X$             | 0 or 1 e, a   | $> 2 $ $b_1 > 3$      | 11 765  | 13.2   | Loses 1.2 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | $B(T \rightarrow H2) = 1$                                                            | WUKS CONF 2016 11  |
| $VLD TT \rightarrow Zt + X$             | 14.8          | 519553                | 1 1965  | 36.1   | Fichais 1.16 TeX                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | $P(T \rightarrow 2t) = 1$                                                            | 1785.10754         |
| $VLD TT \rightarrow Wh + X$             | 14.8          | ≥ 16, ≥ 14            | (2) Yes | 26.1   | Fran 1.35 TeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |            | $P(T \rightarrow Mb) = 1$                                                            | CEFN-EP-2017-894   |
| $VLQ.88 \rightarrow Hb + X$             | 10.0          | 22623                 | 0.968   | 20.3   | 5 mm 200 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | $P(S \rightarrow He) = 1$                                                            | 1585.84306         |
| V0288 = 28 + A                          | a Den h       | 20210                 |         | 20.0   | STATE TO GET                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | 2010 - 220 - 2                                                                       | 1409.0000          |
| ND 00 - Weller                          | 1.4.4         | > 41                  | Yes .   | 20.2   | Contra (646 Gav)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            |                                                                                      | 1510 MANA          |
|                                         |               |                       |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                      |                    |
| Propert draw 6 + 95                     |               | ×1                    |         | 37.0   | Contraction of the second s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 6.0 TeV    | and $n_i$ and $n_i$ , $n = m(n_i)$                                                   | 1783.80127         |
| Excited quark of the last               |               | 1.0.11                |         | 10.0   | 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 100 100    | and a more the wide t                                                                | AD M. CONT. ONLY   |
| Excitationals (Care Mit                 | 100.000       | 10.201                |         | 20.3   | inter in the second sec |            | 1-6-6-1                                                                              | MICE DEC           |
| Excited lepton ("                       | 24.4          |                       |         | 20.3   | 10101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 990 B      | A = 3.8 DeV                                                                          | 1611 2121          |
| Excited lepton v*                       | 3 e, y, r     |                       |         | 20.3   | Trace Sa Ter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | A = 1.8 TeV                                                                          | 1411,2921          |
| LRSW Majorana y                         | 21.1          | 21                    |         | 20.3   | Cana 2010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |            | er(Mu) = 2.4 TeV, so mixing                                                          | 1586,86820         |
| Higgs triplet H <sup>*+</sup> → (/      | 2.3.4 e.p (St | 5) -                  |         | 36.1   | f <sup>11</sup> mans ITO GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |            | Df production                                                                        | ALAS CONF 2017-OR  |
| Higgs triplet H <sup>*+</sup> → Cr      | 3 e, µ, τ     |                       |         | 20.2   | 411 mass 600 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |            | DF productors, $\mathcal{B}(M_1^{++} \rightarrow \ell \tau) = 1$                     | 1411,2921          |
| Monotop (nan res prod)                  | 14.4          | 1.0                   | Yes     | 20.3   | piny 1 invitable particle mass. 657 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |            | Aut.cm = 0.2                                                                         | 1410,5484          |
| Multi-charged particles                 |               |                       |         | 20.3   | nuti sharged particle mass 765 GeV                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |            | DF productions (q) - Se                                                              | 1584,84188         |
| Magnetic monopoles                      | -             | -                     | -       | 7.0    | tosopie mas 1.34 W/.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |            | Df production, (g) = 1,g_{\rm T}, apix 1/2                                           | 1109.01009         |
| -                                       | VS-8 TeV      | 5-1                   | 3 TeV   |        | and a construction of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |            |                                                                                      | 1                  |
|                                         |               |                       |         |        | 10"* 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1          | <sup>U</sup> Mass scale [TeV]                                                        |                    |
|                                         |               |                       |         |        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |            |                                                                                      |                    |

\*Only a selection of the available mass limits on new states or phenomena is shown 1 Smail-radius (large-radius) lets are denoted by the letter (13).

ATLAS (2017)

In the absence of concrete signs of NP, EFTs are a powerfull toolbox to describe NP far below its mass scale.

In the absence of concrete signs of NP, EFTs are a powerfull toolbox to describe NP far below its mass scale.

For the construction of an EFT, we need the field content, the symmetries and a power-counting rule.

In the absence of concrete signs of NP, EFTs are a powerfull toolbox to describe NP far below its mass scale.

For the construction of an EFT, we need the field content, the symmetries and a power-counting rule.

In the case of the SMEFT, the Lagrangian is expanded in inverse powers of the NP mass scale  $\Lambda.$ 

The search for NP in tails of distributions is complicated by the fact that the momentum transfer is not constant: EFT effects grow  $\sim \frac{E}{\Lambda}$ .

The search for NP in tails of distributions is complicated by the fact that the momentum transfer is not constant: EFT effects grow  $\sim \frac{E}{\Lambda}$ .

# One approach is to discard any data with a partonic center-of-mass energy greater than the cutoff scale.

Englert and Spannowsky (2015); Contino et al. (2016); Farina et al. (2017); Alioli et al. (2017)

The search for NP in tails of distributions is complicated by the fact that the momentum transfer is not constant: EFT effects grow  $\sim \frac{E}{\Lambda}$ .

# One approach is to discard any data with a partonic center-of-mass energy greater than the cutoff scale.

Englert and Spannowsky (2015); Contino et al. (2016); Farina et al. (2017); Alioli et al. (2017)

We propose an alternative approach and constrain SMEFT effects in dijet production at the LHC.

"Consistent Searches for SMEFT Effects in Non-Resonant Dijet Events", Alte, König and Shepherd, JHEP 1801 (2018) 094, arXiv:1711.07484.

In the SMEFT, the SM Lagrangian is supplemented by local, higher-dimensional operators built out of SM fields and respecting the SM gauge group.

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \mathcal{L}^{(8)} + \dots,$$

where

$$\mathcal{L}^{(i)} = \sum_{k=1}^{N_i} \frac{c_k^{(i)}}{\Lambda^{i-4}} Q_k^{(i)}.$$

Weinberg (1979); Wilczek and Zee (1979); Buchmueller and Wyler (1986); Grzadkowski et al. (2010); Abbott and Wise (1980); Lehman (2014); Lehman and Martin (2016); ...

In the SMEFT, the SM Lagrangian is supplemented by local, higher-dimensional operators built out of SM fields and respecting the SM gauge group.

$$\mathcal{L}_{\mathsf{SMEFT}} = \mathcal{L}_{\mathsf{SM}} + \mathcal{L}^{(5)} + \mathcal{L}^{(6)} + \mathcal{L}^{(7)} + \mathcal{L}^{(8)} + \dots,$$

where

$$\mathcal{L}^{(i)} = \sum_{k=1}^{N_i} \frac{c_k^{(i)}}{\Lambda^{i-4}} Q_k^{(i)}.$$

Weinberg (1979); Wilczek and Zee (1979); Buchmueller and Wyler (1986); Grzadkowski et al. (2010); Abbott and Wise (1980); Lehman (2014); Lehman and Martin (2016); ...

The **leading (non-trivial) contribution** to dijet production arises from **dimension-six operators**.

**Different non-redundant sets** of **dimension-six operators** exist. However, **physical results** are **basis independent**.

**Different non-redundant sets** of **dimension-six operators** exist. However, **physical results** are **basis independent**.

We work in the **"Warsaw" basis**, assume **baryon-number**, **lepton-number and CP-conservation**. The contributing operators are:

$$\begin{array}{c} Q_{qq}^{(1)} & (\bar{q}) \\ Q_{uu} & (\bar{u}) \\ * & Q_{ud}^{(1)} & (\bar{u}) \\ * & Q_{qu}^{(1)} & (\bar{q}) \\ * & Q_{qd}^{(1)} & (\bar{q}) \\ * & Q_{qd}^{(1)} & (\bar{q}) \\ * & Q_{G} & f' \end{array}$$

$$\begin{aligned} & \left(\bar{q}_{p}\gamma_{\mu}q_{r}\right)\left(\bar{q}_{s}\gamma^{\mu}q_{t}\right) \\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)\left(\bar{u}_{s}\gamma^{\mu}u_{t}\right) \\ & \left(\bar{u}_{p}\gamma_{\mu}u_{r}\right)\left(\bar{d}_{s}\gamma^{\mu}d_{t}\right) \\ & \left(\bar{q}_{p}\gamma_{\mu}q_{r}\right)\left(\bar{u}_{s}\gamma^{\mu}u_{t}\right) \\ & \left(\bar{q}_{p}\gamma_{\mu}q_{r}\right)\left(\bar{d}_{s}\gamma^{\mu}d_{t}\right) \\ & f^{ABC}G_{\mu}^{A\nu}G_{\nu}^{B\rho}G_{\rho}^{C\mu} \end{aligned}$$

$$\begin{array}{c|c} Q_{qq}^{(3)} & \left( \bar{q}_{p} \gamma_{\mu} \tau^{I} q_{r} \right) \left( \bar{q}_{s} \gamma^{\mu} \tau^{I} q_{t} \right) \\ Q_{dd} & \left( \bar{d}_{p} \gamma_{\mu} d_{r} \right) \left( \bar{d}_{s} \gamma^{\mu} d_{t} \right) \\ Q_{ud}^{(8)} & \left( \bar{u}_{p} \gamma_{\mu} T^{A} u_{r} \right) \left( \bar{d}_{s} \gamma^{\mu} T^{A} d_{t} \right) \\ Q_{qu}^{(8)} & \left( \bar{q}_{p} \gamma_{\mu} T^{A} q_{r} \right) \left( \bar{u}_{s} \gamma^{\mu} T^{A} u_{t} \right) \\ Q_{qd}^{(8)} & \left( \bar{q}_{p} \gamma_{\mu} T^{A} q_{r} \right) \left( \bar{d}_{s} \gamma^{\mu} T^{A} d_{t} \right) \end{array}$$

no interference

The dijet cross section in the SMEFT can be written as

$$\sigma_{\text{dijet}} = \sigma_{\text{SM}} + \frac{1}{\Lambda^2} \sigma_{\text{dim}6-\text{SM}} + \frac{1}{\Lambda^4} \sigma_{\text{dim}6} + \dots$$

The dijet cross section in the SMEFT can be written as

$$\sigma_{\rm dijet} = \sigma_{\rm SM} + \frac{1}{\Lambda^2} \, \sigma_{\rm dim6-SM} + \frac{1}{\Lambda^4} \, \sigma_{\rm dim6} + \dots$$

However, the **contribution** arising from the **interference** of **dimension-eight operators** with the **SM** is of the **same order** as the **dimension-six squared piece**.

The dijet cross section in the SMEFT can be written as

$$\sigma_{\rm dijet} = \sigma_{\rm SM} + \frac{1}{\Lambda^2} \, \sigma_{\rm dim6-SM} + \frac{1}{\Lambda^4} \, \sigma_{\rm dim6} + \dots$$

However, the **contribution** arising from the **interference** of **dimension-eight operators** with the **SM** is of the **same order** as the **dimension-six squared piece**.

The options are

- Include the missing contribution
- Truncate at the interference of dimension-six with the SM

The dijet cross section in the SMEFT can be written as

$$\sigma_{\rm dijet} = \sigma_{\rm SM} + \frac{1}{\Lambda^2} \, \sigma_{\rm dim6-SM} + \frac{1}{\Lambda^4} \, \sigma_{\rm dim6} + \dots$$

However, the **contribution** arising from the **interference** of **dimension-eight operators** with the **SM** is of the **same order** as the **dimension-six squared piece**.

The options are

- Include the missing contribution
- Truncate at the interference of dimension-six with the SM

Many EFT analyses pursue neither of the two options.

We recast a recent CMS analysis  $_{\mbox{\tiny CMS}\ (2017)},$  where

- the dimension-six squared piece is taken into account.
- the single-operator case is considered.
- bounds on the NP scale  $\Lambda$  are derived.

We recast a recent CMS analysis  $_{\mbox{\tiny CMS}\ (2017)},$  where

- the dimension-six squared piece is taken into account.
- the single-operator case is considered.
- bounds on the **NP scale**  $\Lambda$  are derived.

We truncate at the dimension-six interference term.

We recast a recent CMS analysis  $\mbox{\tiny CMS (2017)},$  where

- the dimension-six squared piece is taken into account.
- the single-operator case is considered.
- bounds on the **NP scale**  $\Lambda$  are derived.

We truncate at the dimension-six interference term.

We introduce a theory error to account for terms of higher order in the expansion in  $\frac{1}{\Lambda^2}$ .

We recast a recent CMS analysis  $\mbox{\tiny CMS (2017)},$  where

- the dimension-six squared piece is taken into account.
- the single-operator case is considered.
- bounds on the **NP scale**  $\Lambda$  are derived.

We truncate at the dimension-six interference term.

We introduce a theory error to account for terms of higher order in the expansion in  $\frac{1}{\Lambda^2}$ .

We **identify** the **two distinct linear combinations** of dimension-six operators which contribute to the signal.

We recast a recent CMS analysis  $\mbox{\tiny CMS (2017)},$  where

- the dimension-six squared piece is taken into account.
- the single-operator case is considered.
- bounds on the **NP scale**  $\Lambda$  are derived.

We truncate at the dimension-six interference term.

We introduce a theory error to account for terms of higher order in the expansion in  $\frac{1}{\Lambda^2}$ .

We **identify** the **two distinct linear combinations** of dimension-six operators which contribute to the signal.

We derive bounds for both the fixed-Wilson and the fixed-scale case.

# The Multioperator Case

The search analyses the cross section differential in the dijet invariant mass  $m_{ii}$  and the angular variable

$$\chi = e^{|y_1 - y_2|} \, .$$

#### The Multioperator Case

The search analyses the cross section differential in the dijet invariant mass  $m_{ii}$  and the angular variable

 $\chi = e^{|y_1 - y_2|}.$ 



#### Searches in Normalized Angular Distributions

# **Reproduction of the CMS Analysis**

$$\frac{d\sigma}{d\chi}\Big|_{\text{signal}} = \left. \frac{d\sigma}{d\chi} \right|_{\text{SM}} + \frac{1}{\Lambda^2} \left. \frac{d\sigma}{d\chi} \right|_{\text{interference}} + \frac{1}{\Lambda^4} \left. \frac{d\sigma}{d\chi} \right|_{\text{BSM}} + \dots$$
 for validation only!

# **Reproduction of the CMS Analysis**

n

$$\frac{d\sigma}{d\chi}\Big|_{\text{signal}} = \frac{d\sigma}{d\chi}\Big|_{\text{SM}} + \frac{1}{\Lambda^2} \frac{d\sigma}{d\chi}\Big|_{\text{interference}} + \frac{1}{\Lambda^4} \frac{d\sigma}{d\chi}\Big|_{\text{BSM}} + \dots$$
for validation only!
$$\frac{0.20}{0.16} \int_{0.16}^{0.20} \int_{0.16}^{0.20} \int_{\text{Signal K + 10}}^{0.20} \int_$$

Using LO QCD Monte-Carlo samples, a Chi-Squared Fit to the CMS data results in bounds on  $\Lambda$  which agree within  $\sim 1~\text{TeV}$  with the CMS bounds.

# **Truncation at Dimension-Six Interference**

$$\begin{aligned} \left. \frac{d\sigma}{d\chi} \right|_{\text{signal}} &= \left. \frac{d\sigma}{d\chi} \right|_{\text{SM}} + \frac{1}{\Lambda^2} \left. \frac{d\sigma}{d\chi} \right|_{\text{interference}} + \mathcal{O}\left(\frac{1}{\Lambda^4}\right) \\ \Delta\left(\frac{d\sigma}{d\chi}\right) \right|_{\text{theo}} &= \frac{1}{\Lambda^4} \left. \frac{d\sigma}{d\chi} \right|_{\text{BSM}} \end{aligned}$$

# **Truncation at Dimension-Six Interference**

$$\begin{aligned} \left. \frac{d\sigma}{d\chi} \right|_{\text{signal}} &= \left. \frac{d\sigma}{d\chi} \right|_{\text{SM}} + \frac{1}{\Lambda^2} \left. \frac{d\sigma}{d\chi} \right|_{\text{interference}} + \mathcal{O}\left(\frac{1}{\Lambda^4}\right) \\ \Delta\left(\frac{d\sigma}{d\chi}\right) \right|_{\text{theo}} &= \left. \frac{1}{\Lambda^4} \left. \frac{d\sigma}{d\chi} \right|_{\text{BSM}} \end{aligned}$$

 $m_{ii} > 4.8 \text{ TeV}$ 



# **Truncation at Dimension-Six Interference**

$$\begin{aligned} \left. \frac{d\sigma}{d\chi} \right|_{\text{signal}} &= \left. \frac{d\sigma}{d\chi} \right|_{\text{SM}} + \frac{1}{\Lambda^2} \left. \frac{d\sigma}{d\chi} \right|_{\text{interference}} + \mathcal{O}\left(\frac{1}{\Lambda^4}\right) \\ \Delta\left(\frac{d\sigma}{d\chi}\right) \right|_{\text{theo}} &= \left. \frac{1}{\Lambda^4} \left. \frac{d\sigma}{d\chi} \right|_{\text{BSM}} \end{aligned}$$

 $m_{ii} > 4.8 \text{ TeV}$ 



Including the new theory error, we find no bounds on  $\Lambda$ .

# **Searches in Unnormalized Distributions**

# Signal and Theory Error

We use the signal

$$\sigma_{\rm signal} = \sigma_{\rm SM} + \frac{1}{\Lambda^2} \, \sigma_{\rm interference} \, , \label{eq:signal}$$

where we switch on the operators  $Q_{aq}^{(1)}$  and  $Q_{au}^{(8)}$ .

# Signal and Theory Error

We use the signal

$$\sigma_{\rm signal} = \sigma_{\rm SM} + \frac{1}{\Lambda^2} \, \sigma_{\rm interference} \, , \label{eq:signal}$$

where we switch on the **operators**  $Q_{qq}^{(1)}$  and  $Q_{qu}^{(8)}$ .

Our theory error models both the dimension-six squared piece and the dimension-eight-interference piece:

$$\Delta \sigma_{
m theo} = rac{1}{\Lambda^4} \, \sigma_{
m dim6} \; ,$$

where we replace the squared Wilson coefficients by

$$\begin{split} \Delta_{\mathrm{theo},1} &= \max\left\{c_k^2; \ g_s \, c_8 \sqrt{N_8}\right\}\\ \text{or} \qquad \Delta_{\mathrm{theo},2} &= \sqrt{c_k^4 + \left(g_s \, c_8 \sqrt{N_8}\right)^2} \end{split}$$





Including the theory uncertainty, the bounds weaken. Some amount of integrated luminosity is needed to obtain bounds.



Including the theory uncertainty, the bounds weaken. Some amount of integrated luminosity is needed to obtain bounds.

Above this integrated luminosity, we do not only find a lower bound for  $\Lambda,$  but rather an excluded region.



Including the theory uncertainty, the bounds weaken. Some amount of integrated luminosity is needed to obtain bounds.

Above this integrated luminosity, we do not only find a lower bound for  $\Lambda,$  but rather an excluded region.

Can we do better?

### Searches in the Dijet Invariant Mass Spectrum



### Searches in the Dijet Invariant Mass Spectrum



The searches in the dijet invariant mass spectrum yield bounds at lower integrated luminosity compared to the searches in the angular spectrum.

We introduce a **new theory error** to account for **higher-order contributions**.

We introduce a **new theory error** to account for **higher-order contributions**.

**Two distinct linear combinations** of Wilson coefficients **contribute to the angular spectra**.

We introduce a **new theory error** to account for **higher-order contributions**.

**Two distinct linear combinations** of Wilson coefficients **contribute to the angular spectra**.

The searches in **unnormalized**  $m_{jj}$  **distributions** reach **higher** scales at lower integrated luminosity compared to searches in angular spectra.

Besides fixing the Wilson coefficients and fitting for the NP scale, we can also fix the NP scale and fit for the Wilson coefficient.

