

Top/Higgs/EW processes in the SMEFT at NLO in QCD

Ken Mimasu

In collaboration with: C. Degrande, F. Maltoni, E. Vryonidou & C. Zhang arXiv:1804.07773

Planck 2018, BCTP, Universität Bonn

22nd May 2018

Introduction

- The LHC is entering a "precision era"
 - No clear evidence for new physics from direct searches
 - We are approaching the limits of the 'energy frontier'
 - Higgs boson discovery has completed the picture of the Standard Model (SM) Electroweak (EW) sector
 - Properties consistent with SM expectations (so far)
 - Complementary approach: Standard Model Effective Field Theory
- Many channels are becoming systematics dominated
 - Requires high precision theory input: higher order predictions
 - Fixed order (FO) & interfaced with parton shower (PS)
 - Standard for SM, also useful for BSM effects

SMEFT

- Parametrise new physics effects at experimental energy E
 - BSM states are 'decoupled' *i.e.* live at an energy $\land >> E$
 - Generalised, gauge/Lorentz-invariant interactions between SM d.o.f
- Operator expansion:

$$\mathcal{L}_{\text{eff}} = \sum_{i} \frac{c_i \mathcal{O}_i^D}{\Lambda^{D-4}}$$
 more:
 $\begin{array}{c} \text{fields} \\ \text{derivatives} \end{array}$

- Introduces higher-derivative/contact operators: sensitive via large momentum flows through vertices (tails of energy distributions)
- Dimension 6: 59 (76 real) 2499 operators depending on assumptions regarding CP, flavor...

[Buchmuller & Wyler; Nucl.Phys. B268 (1986) 621] & [Grzadkowski et al.; JHEP 1010 (2010) 085]

• Dimension 8: ~ 895 (36971) operators!

[Lehman et al.; PRD 91 (2015) 105014] & [Henning et al.; Comm.Math.Phys. 347 (2016) 2, 363]

Going NLO

- Ultimate goal: a precision global fit of full SMEFT including LHC observables at HL-LHC
- Step 1: NLO QCD(+PS) predictions
 - K-factors/shapes & control over PDF + scale uncertainties
- NLO EW corrections
 - Potentially important but much harder
 - Automation on the way with SHERPA, Madgraph5_aMC@NLO
- RG-improved predictions & operator mixing
 - Very helpful for cross checking NLO implementations
- Compare to full NLO calculations, assess the importance of finite terms [Alonso*, Jenkins, Manohar & Trott; JHEP 1310 (2013) 087, JHEP 1401 (2014) 035 & JHEP 1404 (2014) 159*] Top & EW SMEFT@NLO K. Mimasu, 22/05/2018

Top/Higgs/EW SMEFT

- Top quark is a crucial ingredient of the EW sector
 - Top-Higgs-W/Z couplings/masses are related in SM: unitarity cancellations
 - May reveal hints about the underlying nature of EWSB
- Coloured sector, strongly coupled to the Higgs
 - Large corrections to inclusive rates (~1 K-factors)
 - Non-trivial shape corrections at differential level
 - Non-trivial renormalisation/operator mixing from QCD
- Active research topic in SMEFT
- Many measurements at the LHC
 - Total, differential & boosted
 - Starting to access rare processes e.g. tt+Z/W/ γ , tZj

[Degrande, Durieux, Maltoni, KM, Vryonidou, Zhang; in preparation]

SMEFT@NLO in QCD

- Today's results: part of ongoing efforts in developing MC tool for SMEFT in top/EW/Higgs sector
- General FeynRules/NLOCT implementation of 'Warsaw' basis for NLOQCD + PS event generation

[Christensen & Duhr; Comp. Phys. Comm. 180 (2009) 1614] [Degrande; Comp. Phys. Comm. 197 (2015) 239] [Alloul et al.; Comp. Phys. Comm. 185 (2014) 2250] [Hahn; Comp. Phys. Comm. 140 (2001) 415]

- $U(3)^3 \times U(2)^2$ flavor symmetry hypothesis
 - Similar to Minimal Flavor Violation keeping only m_t non-zero
 - Top operators as independent d.o.f to 1st & 2nd generations (diagonal)
- Model validated against existing implementations
 - single-top, ttH, ttZ/ γ

[Maltoni, Vryonidou & Zhang; JHEP 1610 (2016) 123] [Bylund et al.; JHEP 1605 (2016) 052]

K. Mimasu, 22/05/2018

[Zhang; PRL 116 (2016) 162002] [Degrande et al.; PRD 91 (2015) 034024] [Durieux, Maltoni & Zhang; PRD 91 (2015) 074017] Top & EW SMEFT@NLO [Degrande, Maltoni, KM, Vryonidou, Zhang; arXiv 1804.07773]

Case study: tZj/tHj

- Alternative to tt+X: require a single top quark
 - Eliminates dominant QCD contribution
- Single top rate at 13 TeV LHC ~ 200 pb (1/4 of QCD tt)
 - Sensitive to 2 four-fermion and 3 top/EW operators that modify tbW vertex
- Require the presence of an additional Z or Higgs
 - Unique possibility of probing large set of top/Higgs/EW operators at once
 - Processes at the heart of EWSB sector
 - Higher thresholds may enhance EFT effects
- Recent LHC measurement of tZj cross section at 4.2σ [ATLAS; arXiv:1710.03659], [CMS-PAS-TOP-16-020 & arXiv:1712.02825]
- Timely moment to perform EFT sensitivity study in this pair of challenging processes & showcase model implementation

Operators

tHj tZj both

$\bullet \mathcal{O}_W$	$\varepsilon_{IJK} W^I_{\mu u} W^{J, u ho} W^{K,\mu}_{ ho}$	$\bullet {\cal O}^{(3)}_{arphi Q}$	$i \bigl(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu au_{\scriptscriptstyle I} arphi \bigr) \bigl(ar{Q} \gamma^\mu au^{\scriptscriptstyle I} Q \bigr) + { m h.c.}$
$\bullet \mathcal{O}_{\varphi W}$	$\left(arphi^\dagger arphi - rac{v^2}{2} ight) W^{\mu u}_{I} W^{I}_{\mu u}$	$\bullet {\cal O}^{(1)}_{arphi Q}$	$i \bigl(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi \bigr) \bigl(ar{Q} \gamma^\mu Q \bigr) + ext{h.c.}$
$\bullet \mathcal{O}_{\varphi WB}$	$(\varphi^{\dagger} au_{\scriptscriptstyle I}\varphi)B^{\mu u}W^{\scriptscriptstyle I}_{\mu u}$	$\bullet \mathcal{O}_{\varphi t}$	$i \left(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi \right) \left(\overline{t} \gamma^{\mu} t \right) + \text{h.c.}$
$\bullet \mathcal{O}_{\varphi D}$	$(\varphi^{\dagger}D^{\mu}\varphi)^{\dagger}(\varphi^{\dagger}D_{\mu}\varphi)$	$\bullet {\cal O}_{\varphi tb}$	$i (\tilde{\varphi} D_{\mu} \varphi) (\bar{t} \gamma^{\mu} b) + \text{h.c.}$
$\bullet \mathcal{O}_{\varphi \Box}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	${}^{ullet}\mathcal{O}^{(1)}_{arphi q}$	$i ig(arphi^\dagger \stackrel{\leftrightarrow}{D}_\mu arphi ig) ig(ar q_i \gamma^\mu q_i ig) + ext{h.c.}$
$\bullet {\cal O}_{t\varphi}$	$\left(arphi^\dagger arphi - rac{v^2}{2} ight) ar{Q} t ilde{arphi} + { m h.c.}$	${}^{\bullet}\mathcal{O}^{(3)}_{arphi q}$	$i (\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \tau_{\scriptscriptstyle I} \varphi) (\bar{q}_i \gamma^{\mu} \tau^{\scriptscriptstyle I} q_i) + { m h.c.}$
$\bullet \mathcal{O}_{tW}$	$i ig(ar{Q} \sigma^{\mu u} au_{_I} t ig) ilde{arphi} W^I_{\mu u} + ext{h.c.}$	$\bullet {\mathcal O}_{\varphi u}$	$i(\varphi^{\dagger} \overset{\leftrightarrow}{D}_{\mu} \varphi) (\bar{u}_i \gamma^{\mu} u_i) + \text{h.c.}$
$\bullet \mathcal{O}_{tB}$	$i(\bar{Q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}+\text{h.c.}$	$\bullet \mathcal{O}_{Qq}^{(3,1)}$	$\left(ar{q}_i\gamma_\mu au_{\scriptscriptstyle I} q_i ight) \left(ar{Q}\gamma^\mu au^{\scriptscriptstyle I} Q ight)$
$\bullet \mathcal{O}_{tG}^{\ \star}$	$i \left(\bar{Q} \sigma^{\mu\nu} T_A t \right) \tilde{\varphi} G^A_{\mu\nu} + \text{h.c.}$	$\bullet {\cal O}_{Qq}^{(3,8)}$	$\left(\bar{q}_i \gamma_\mu \tau_{\scriptscriptstyle I} T_{\scriptscriptstyle A} q_i \right) \left(\bar{Q} \gamma^\mu \tau^{\scriptscriptstyle I} T^{\scriptscriptstyle A} Q \right)$

NLO

Constrained by electroweak precision tests (LEP) Two blind directions in Warsaw basis:

$$\mathcal{O}_{HW} = (D^{\mu}\varphi)^{\dagger}\tau_{I}(D^{\nu}\varphi)W^{I}_{\mu\nu}$$

$$\mathcal{O}_{HB} = (D^{\mu}\varphi)^{\dagger} (D^{\nu}\varphi) B_{\mu\nu}.$$

 $\frac{dC_i(\mu)}{d\log\mu} = \frac{\alpha_s}{\pi} \gamma_{ij} C_j(\mu), \quad \gamma = \begin{pmatrix} -2 & 0 & 0\\ 0 & 2/3 & 0\\ 0 & 0 & 2/3 \end{pmatrix}$

Consider these two instead to assess orthogonal sensitivity of tZj/tHj

K. Mimasu, 22/05/2018

RGE

Interplay

SMEFT in tHj/tZj

- Accessing the $bW \rightarrow tH \& bW \rightarrow tZ$ sub-amplitudes
 - Rich interplay between EFT operators from different sectors
 - Different energy growth and interference with the SM

[Mantani, Maltoni, KM; in preparation] [Dror et al.; JHEP 01 (2016) 071]

Anatomy of tHj

- LO helicity amplitudes
 - High energy limit: $s \sim -t \gg v^2$
- Maximum energy growth
 - SU(2) triplet current
 - Interferes with leading SM
 - RH Charged Current
 - Weak dipole
 - Fields strengths source transverse gauge bosons
 - Not captured by Goldstone equiv.
- Subleading energy growth
 - $\propto m_t$ & interferes with sub-leading SM amplitude \rightarrow no growth

$\lambda_b,\lambda_W,\lambda_t$	\mathbf{SM}	\mathcal{O}_{tarphi}	${\cal O}^{(3)}_{arphi Q}$	$\mathcal{O}_{arphi W}$	\mathcal{O}_{tW}	${\cal O}_{HW}$
-, 0, -	s^0	s^0	$\sqrt{s(s+t)}$	s^0	s^0	$\sqrt{s(s+t)}$
-, 0, +	$\frac{1}{\sqrt{s}}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$\frac{1}{\sqrt{s}}$	$rac{m_W s}{\sqrt{-t}}$	$\frac{1}{\sqrt{s}}$
-, -, -	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{s}}$	$m_W \sqrt{-t}$	$rac{m_Ws}{\sqrt{-t}}$	$m_t \sqrt{-t}$	$rac{m_W(s+t)}{\sqrt{-t}}$
-, -, +	$\frac{1}{s}$	s^0	s^0	_	$\sqrt{s(s+t)}$	$\frac{1}{s}$
-, +, -	$\frac{1}{\sqrt{s}}$	-	$\frac{1}{\sqrt{s}}$	$rac{m_W(s+t)}{\sqrt{-t}}$	$\frac{1}{\sqrt{s}}$	$rac{m_W(s+t)}{\sqrt{-t}}$
-,+,+	s^0	_	s^0	s^0	s^0	1

 $bW \rightarrow tH (bW \rightarrow tZ in backup)$

Consistent with non-interference theorem in $2 \rightarrow 2$

[Cheung & Shen; PRL 115 (2015) 071601] [Azatov, Contino & Riva; PRD 95 (2017) 065014]

Top & EW SMEFT@NLO

$\Lambda = 1$ TeV everywhere

Results

- Fixed order using Madgraph5_aMC@NLO
 - NNPDF3.0 LO/NLO PDF sets
 - 5-flavor scheme
- Scale choice
 - t H j: μ₀=(m_H+m_t)/4
 - t Z j: µ₀=(m_Z+m_t)/4
- Uncertainties:

$$\begin{split} m_t &= 172.5 \ {\rm GeV}\,, \quad m_H = 125 \ {\rm GeV}\,, \quad m_Z = 91.1876 \ {\rm GeV}\,, \\ \alpha_{EW}^{-1} &= 127.9\,, \quad G_F = 1.16637 \times 10^{-5} \ {\rm GeV}^{-2}\,. \end{split}$$

[Demartin, Maltoni & Mawatari; EPJC 75 (2015) 267]

$$\sigma^{+\delta\mu_0}_{-\delta\mu_0} [\delta\mu_{EFT}]_{\delta\mu_{EFT}} \pm \delta_{PDF}$$

- 9 point variation of factorisation and renormalisation scale ($\mu_0/2$, μ_0 , $2\mu_0)$
- PDF uncertainties
- EFT scale variation from QCD running of operators (where relevant)

$$\sigma(\mu_0) = \sigma_{SM} + \sum_i \frac{1 \text{TeV}^2}{\Lambda^2} C_i(\mu_0) \sigma_i(\mu_0) + \sum_{i,j} \frac{1 \text{TeV}^4}{\Lambda^4} C_i(\mu_0) C_j(\mu_0) \sigma_{ij}(\mu_0)$$

 $pp \to t(\bar{t}) H j$ $c/\Lambda = 1$ [TeV⁻²]

Inclusive results: tHj

LHC@13 TeV (tZj in backup)

σ [fb]	LO	NLO	K-factor
σ_{SM}	$57.56(4)^{+11.2\%}_{-7.4\%} \pm 10.2\%$	$75.87(4)^{+2.2\%}_{-6.4\%}\pm1.2\%$	1.32
$\sigma_{_{arphi W}}$	$8.12(2)^{+13.1\%}_{-9.3\%}\pm 9.3\%$	$7.76(2)^{+7.0\%}_{-6.3\%}\pm 1.0\%$	0.96
$\sigma_{_{arphi W,arphi W}}$	$5.212(7)^{+10.6\%}_{-6.8\%}\pm 10.2\%$	$6.263(7)^{+2.6\%}_{-7.8\%}\pm1.3\%$	1.20
σ_{tarphi}	$-1.203(6)^{+12.0\%}_{-15.6\%}\pm8.9\%$	$-0.246(6)^{+144.5[31.4]\%}_{-157.8[19.0]\%}\pm2.1\%$	0.20
$\sigma_{\scriptscriptstyle tarphi, \scriptscriptstyle tarphi}$	$0.6682(9)^{+12.7\%}_{-8.9\%}\pm9.6\%$	$0.7306(8)^{+4.6[0.6]\%}_{-7.3[0.2]\%}\pm1.0\%$	1.09
σ_{tW}	$19.38(6)^{+13.0\%}_{-9.3\%}\pm 9.4\%$	$22.18(6)^{+3.8[0.4]\%}_{-6.8[0.9]\%}\pm1.0\%$	1.14
$\sigma_{\scriptscriptstyle tW,tW}$	$46.40(8)^{+9.3\%}_{-5.5\%}\pm11.1\%$	$71.24(8)^{+7.4[1.5]\%}_{-14.0[6.9]\%}\pm1.9\%$	1.54
$\sigma_{_{\varphi Q}(3)}$	$-3.03(3)^{+0.0\%}_{-2.2\%}\pm15.4\%$	$-10.04(4)^{+11.1\%}_{-8.9\%}\pm1.8\%$	3.31
$\sigma_{_{\varphi Q}(3),_{\varphi Q}(3)}$	$11.23(2)^{+9.4\%}_{-5.6\%}\pm11.2\%$	$15.28(2)^{+5.0\%}_{-10.9\%} \pm 1.8\%$	1.36
$\sigma_{_{arphi tb}}$	0	0	-
$\sigma_{_{arphi tb,arphi tb}}$	$2.752(4)^{+9.4\%}_{-5.5\%}\pm11.3\%$	$3.768(4)^{+5.0\%}_{-10.9\%}\pm 1.8\%$	1.54
$\sigma_{\scriptscriptstyle HW}$	$-3.526(4)^{+5.6\%}_{-9.5\%}\pm10.9\%$	$-5.27(1)^{+6.5\%}_{-2.9\%}\pm1.5\%$	1.50
$\sigma_{\scriptscriptstyle HW,HW}$	$0.9356(4)^{+7.9\%}_{-4.0\%}\pm12.3\%$	$1.058(1)^{+4.8\%}_{-11.9\%}\pm 2.3\%$	1.13
$\sigma_{\scriptscriptstyle tG}$	-0.418(5)	$)^{+12.3\%}_{-9.8\%}\pm 1.1\%$	-
$\sigma_{\scriptscriptstyle tG,tG}$	1.413(1)	$^{+21.3\%}_{-30.6\%}\pm2.5\%$	-
$\sigma_{_{Qq}(3,1)}$	$-22.50(5)^{+8.0\%}_{-11.8\%}\pm9.7\%$	$-20.10(5)^{+13.8\%}_{-13.3\%}\pm1.1\%$	0.89
$\sigma_{_{Qq}(3,1)}_{,Qq}{}^{(3,1)}$	$69.78(3)^{+8.0\%}_{-4.1\%}\pm 12.1\%$	$62.20(3)^{+11.5\%}_{-15.9\%}\pm2.3\%$	0.89
$\sigma_{\scriptscriptstyle Qq^{(3,8)}}$	_	$0.25(3)^{+25.4\%}_{-27.1\%}\pm 4.7\%$	-
$\sigma_{_{Qq}(3,8),_{Qq}(3,8)}$	$15.53(2)^{+8.0\%}_{-4.1\%}\pm 12.1\%$	$14.07(2)^{+11.0\%}_{-15.7\%}\pm2.1\%$	0.91

K-factors not universal

Reduction of QCD scale/PDF uncertainties

EFT scale uncertainty subdominant

Some very strong dependence on EFT operators

O(>1) deviations within current bounds

Differential results in tZj

Potentially large deviations in the tails (saturating current limits) tHj process is very rare, differential results not likely at LHC

LHC sensitivity

Usual EFT story: looking at high energy tails increases sensitivity Compare to single top which has a much larger rate

r=	=σi/σsm	tj	$tj \label{eq:pt_t} (p_T^t > 350 \ {\rm GeV})$	tZj	tZj $(p_T^t > 250 \text{ GeV})$	tHj	Increased sensitivity for weak dipoles
-	σ_{SM}	224 pb	880 fb	839 fb	69 fb	75.9 fb	
-	r_{tW}	0.0275	0.024	0.016	0.010	0.292	Consistent with $2 \rightarrow 2$
_	$r_{tW,tW}$	0.0162	0.35	0.095	0.67	0.940	subamplitude analysis
	$r_{_{arphi Q}(3)}$	0.121	0.121	0.192	0.172	-0.132	
	$r_{_{arphi Q}(3)}{}_{,arphi Q}{}^{(3)}$	0.0037	0.0037	0.029	0.114	0.21	New energy growths
_	$r_{_{arphi tb,arphi tb}}$	0.00090	0.0008	0.0050	0.027	0.050	wrt single ton
	r_{tG}	0.0003	-0.01	0.00053	-0.0048	-0.0055	whit on gio top
_	$r_{\scriptscriptstyle tG,tG}$	0.00062	0.045	0.0027	0.022	0.025	Single top should
	$r_{_{Qq}(3,1)}$	-0.353	-4.4	-0.59	-2.22	-0.39	overtuelly outperform
	$r_{_{Qq}(3,1),_{Qq}(3,1)}$	0.126	11.5	0.65	5.1	1.21	+Ui/+7i for four formion
	$r_{Qq}{}_{(3,8),Qq}{}_{(3,8)}$	0.0308	2.73	0.133	1.01	1.08	

Current sensitivity

- Gauge sensitivity of these processes at LHC
- Recent measurements of tZj at CMS & ATLAS
 - Signal strengths $0.75 \pm 0.27 \& 1.31 \pm 0.47$
 - Cast into naive 'confidence intervals'
 - Ignore acceptance effects & contribution of operators to bkg processes
 - Which include tW, ttV, ttH, tWZ, tHW
- CMS analysis of tHj + tHW + ttH
 - Combined signal strength 1.8 ± 0.67
 - Take into account only modifications to tHj
 - Except top Yukawa operator contribution to ttH

[CMS; PLB 779 (2018) 358-384] [ATLAS; CERN-EP-2017-188]

[CMS-PAS-HIG-17-005]

 $\begin{array}{c|ccc} \sigma \, [{\rm fb}] & {\rm LO} & {\rm NLO} \\ \hline t \, H \, j & 57.5 & 75.9 \\ t \, \bar{t} \, H & 464 & 507 \\ t \, H W & 14.5 & 15.9 \end{array}$

Current sensitivity

Future sensitivity

- tZj: take high top p_T region > 250 GeV
 - 10x smaller cross section \rightarrow end of Run II or HL-LHC
- tHj: assume it is measured with the current tZj precision
 - tHj inclusive cross section is similar to the high p_T tZj cross section
 - target for HL-LHC
- Start to improve on existing limits for certain operators
 - Dipoles, RHCC, (top Yukawa)
- NLO predictions increase sensitivity
 - Bring theory uncertainties down below experimental stat. and syst.

Future sensitivity

Conclusion

- Presented a FeynRules/NLOCT UFO implementation of top/EW/Higgs sector in SMEFT
 - $U(3)^3 \times U(2)^2$ flavor symmetry to select top quark operators
 - Allows for NLOQCD+PS predictions for any relevant process in, *e.g.*, MG5
- Fixed order NLO predictions for tZj & tHj in SMEFT at LHC
 - Challenging process that showcases implementation
 - Related to mass generation/unitarity cancellations in SM
 - Complete predictions for large operator set → can be used in fits
- Current & future LHC sensitivity study
 - New energy growth with respect to single top for SU(2) current and RHCC
 - Interesting future sensitivity at high energy to dipoles, 4F ops.

Thank you

Minimal Flavor Violation

[D'Ambrosio et al.; Nucl. Phys. B645 (2002) 155]

- Building SMEFT for top/Higgs/EW sector:
 - Fermion operators singling out top/3rd generation fermion fields
 - Go beyond flavor universal scenario in a controlled way

 $q^i \to U_a^{ij} q^j, \ u^i \to U_u^{ij} u^j, \ d^i \to U_d^{ij} d^j, \ l^i \to U_l^{ij} l^j, \ e^i \to U_e^{ij} e^j$

- SM possesses a large $U(3)^5$ flavor symmetry
 - Only broken by Yukawa couplings
 - Restore symmetry by promoting Yukawa matrices to spurions
 - Apply principle to higher dim. operators

$$\begin{split} Y_u &\to U_q \, Y_u \, U_u^{\dagger}, \ Y_d \to U_q \, Y_d \, U_d^{\dagger}, \ Y_e \to U_L \, Y_e \, U_e^{\dagger} \\ \mathcal{L}_{\text{Yuk.}} &= Y_d^{ij} (\bar{q}_i \, \varphi) d_j + Y_u^{ij} (\bar{q}_i \, \tilde{\varphi}) u_j + Y_e^{ij} (\bar{l}_i \, \varphi) e_j + \text{h.c.} \\ \langle Y_d \rangle^{ij} &= y_d^{ij} \propto m_d^{ij}, \ \langle Y_e \rangle^{ij} = y_e^{ij} \propto m_e^{ij}, \ \langle Y_u \rangle^{ij} = (V^{\dagger} y_u)^{ij} \propto (V^{\dagger})^{ik} m_u^{kj} \end{split}$$
K. Mimasu, 22/05/2018

Classification in SMEFT

- Operators that break U(3)⁵: spurion insertion
 - Yukawa
 - Dipoles
 - Right handed charged current

 $\begin{aligned} a_{u\varphi} \left[V^{\dagger} y_{u} \right]^{ij} (\varphi^{\dagger} \varphi) (\bar{q}_{i} \,\tilde{\varphi}) u_{j} \\ a_{uW} \left[V^{\dagger} y_{u} \right]^{ij} (\bar{q}_{i} \,\tilde{\varphi}) \sigma^{\mu\nu} \tau_{I} \, u_{j} \, W^{I}_{\mu\nu} \\ i \, a_{\varphi u d} \left[y_{u} \, V \, y_{d} \right]^{ij} (\tilde{\varphi}^{\dagger} \, D_{\mu} \,\varphi) (\bar{u}_{i} \gamma^{\mu} d_{j}) \end{aligned}$

- Operators that preserve U(3)⁵: spurions parametrise departures from symmetric limit
 - All other fermion currents
 - 3rd generation quarks preferentially selected due to large Yukawas
 - SMEFT \rightarrow Flavor symmetric + 3rd generation only operators

$$\begin{split} (\bar{q}^{i} q^{j})[\,\mathbb{I} + Y_{u}Y_{u}^{\dagger} + Y_{d}Y_{d}^{\dagger} + \dots]^{ij} &\to (\bar{q}^{i} q^{j})[\,\mathbb{I} + V^{\dagger}(y_{u})^{2}V + (y_{d})^{2} + \dots]^{ij} \\ (\bar{u}^{i} u^{j})[\,\mathbb{I} + Y_{u}^{\dagger}Y_{u} + \dots]^{ij} &\to (\bar{u}^{i} u^{j})[\,\mathbb{I} + (y_{u})^{2} + \dots]^{ij}, \\ (\bar{d}^{i} d^{j})[\,\mathbb{I} + Y_{d}^{\dagger}Y_{d} + \dots]^{ij} &\to (\bar{d}^{i} d^{j})[\,\mathbb{I} + (y_{d})^{2} + \dots]^{ij}, \end{split}$$

FeynRules/NLOCT/UFO

• FeynRules

[Christensen & Duhr; Comp. Phys. Comm. 180 (2009) 1614] [Alloul et al.; Comp. Phys. Comm. 185 (2014) 2250]

- Framework: Lagrangian \rightarrow Feynman rules \rightarrow UFO model \rightarrow MC events
- Universal FeynRules Output (UFO)

[Degrande et al.; Comp. Phys. Comm. 183 (2012) 1201]

- Model file with particle content, internal/external parameters, Feynman rules, Lorentz structures, counter-terms,...
- Compatible with many MC event generators (MG5, Sherpa, Whizard,...)
- NLOCT

[Degrande; Comp. Phys. Comm. 197 (2015) 239] [Hahn; Comp. Phys. Comm. 140 (2001) 415]

- Automatic calculation of UV and R₂ counter-terms from FeynRules model
- Implemented as additional Feynman rules in the UFO format
- UV: on-shell renormalisation procedure for masses/wavefunction, MSbar for higher point functions
- R₂: numerical artefacts of dimensional regularisation

[Maltoni, Vryonidou & Zhang; JHEP 1610 (2016) 123]

ttH in SMEFT

 $\mathcal{O}_{t\varphi} = (\varphi^{\dagger}\varphi)(\bar{Q}_{L}\,\tilde{\varphi}\,t_{R}) \qquad (O_{t\phi},O_{\phi G},O_{tG})$ $\mathcal{O}_{\varphi G} = (\varphi^{\dagger}\varphi)\,G_{\mu\nu}^{A}\,G_{A}^{\mu\nu} \qquad \frac{dC_{i}(\mu)}{d\log\mu} = \frac{\alpha_{s}}{\pi}\gamma_{ij}C_{j}(\mu) \qquad \gamma = \begin{pmatrix} -2 & 16 & 8\\ 0 & -7/2 & 1/2\\ 0 & 0 & 1/3 \end{pmatrix}$

- Operators involving the top/Higgs/gluon
 - gg→H & tt production partly constrain the Wilson coefficient space
 - ttH is the only direct probe of the Top-Higgs interaction
 - In principle 3-gluon O_G and 4 fermion operators also contribute but turn out to be better constrained by tt and multi-jet measurements
- Different K-factors among SM/dim-6 operators
- Large Λ^{-4} effects in both shape & normalisation
 - Scenarios where "EFT-squared" terms are large but energy is below cutoff

$$\frac{E^2}{\Lambda^2} < 1 < c_i^{(6)} \frac{E^2}{\Lambda^2} < c_i^{(6)} c_j^{(6)} \frac{E^4}{\Lambda^4}$$

K. Mimasu, 22/05/2018

Top & EW SMEFT@NLO

EFT scale dependence

- Set of running/mixing EFT couplings
 - Additional source of theoretical uncertainty
 - Like with α_S , can be estimated by scale variation

$$\begin{split} C_{i}(\mu) &= \Gamma_{ij}(\mu,\mu_{0})C_{j}(\mu_{0}) \qquad \Gamma_{ij}(\mu,\mu_{0}) = \exp\left(\frac{-2}{\beta_{0}}\log\frac{\alpha_{s}(\mu)}{\alpha_{s}(\mu_{0})}\gamma_{ij}\right) \\ &\beta_{0} = 11 - 2/3n_{f} , \\ \\ \sigma(\mu) &= \sigma_{SM} + \sum_{i}\frac{1\text{TeV}^{2}}{\Lambda^{2}}C_{i}(\mu_{0})\sigma_{i}(\mu_{0}) + \sum_{i,j}\frac{1\text{TeV}^{4}}{\Lambda^{4}}C_{i}(\mu_{0})C_{j}(\mu_{0})\sigma_{ij}(\mu_{0}) \\ &\mu_{0} \rightarrow \mu \\ \sigma(\mu) &= \sigma_{SM} + \sum_{i}\frac{1\text{TeV}^{2}}{\Lambda^{2}}C_{i}(\mu)\sigma_{i}(\mu) + \sum_{i,j}\frac{1\text{TeV}^{4}}{\Lambda^{4}}C_{i}(\mu)C_{j}(\mu)\sigma_{ij}(\mu) \\ &= \sigma_{SM} + \sum_{i}\frac{1\text{TeV}^{2}}{\Lambda^{2}}C_{i}(\mu_{0})\sigma_{i}(\mu_{0};\mu) + \sum_{i,j}\frac{1\text{TeV}^{4}}{\Lambda^{4}}C_{i}(\mu_{0})C_{j}(\mu_{0})\sigma_{ij}(\mu_{0};\mu) \\ &= \sigma_{i}(\mu_{0};\mu) = \Gamma_{ji}(\mu,\mu_{0})\sigma_{j}(\mu) , \\ \sigma_{ij}(\mu_{0};\mu) &= \Gamma_{ki}(\mu,\mu_{0})\Gamma_{lj}(\mu,\mu_{0})\sigma_{kl}(\mu) \end{split}$$

EFT scale dependence

- Full NLO stable under scale variation
- Large finite effects: RG improved underestimates NLO
- Scale uncertainty estimate
 - Take c_i defined at scales 2μ₀ & μ₀/2 and run back to the central scale

δµ_{EFT}: Does not cancel in e.g. cross section ratios

SMEFT - 'EW' sector

X ³			φ^6 and $\varphi^4 D^2$	$\psi^2 \varphi^3$	
Q_G	$f^{ABC}G^{A\nu}_{\mu}G^{B\rho}_{\nu}G^{C\mu}_{\rho}$	Q_{arphi}	$(arphi^\dagger arphi)^3$	$Q_{e\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{l}_{p}e_{r}\varphi)$
$Q_{\widetilde{G}}$	$f^{ABC} \widetilde{G}^{A\nu}_{\mu} G^{B\rho}_{\nu} G^{C\mu}_{\rho}$	$Q_{arphi\square}$	$(\varphi^{\dagger}\varphi)\Box(\varphi^{\dagger}\varphi)$	$Q_{u\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}u_{r}\widetilde{\varphi})$
Q_W	$\varepsilon^{IJK}W^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$	$Q_{arphi D}$	$\left(\varphi^{\dagger} D^{\mu} \varphi \right)^{\star} \left(\varphi^{\dagger} D_{\mu} \varphi \right)$	$Q_{d\varphi}$	$(\varphi^{\dagger}\varphi)(\bar{q}_{p}d_{r}\varphi)$
$Q_{\widetilde{W}}$	$\varepsilon^{IJK}\widetilde{W}^{I\nu}_{\mu}W^{J\rho}_{\nu}W^{K\mu}_{\rho}$				
$X^2 \varphi^2$		$\psi^2 X \varphi$		$\psi^2 \varphi^2 D$	
$Q_{\varphi G}$	$\varphi^{\dagger}\varphiG^{A}_{\mu u}G^{A\mu u}$	Q_{eW}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \tau^I \varphi W^I_{\mu\nu}$	$Q^{(1)}_{arphi l}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{l}_{p}\gamma^{\mu}l_{r})$
$Q_{\varphi \widetilde{G}}$	$arphi^\dagger arphi \widetilde{G}^A_{\mu u} G^{A\mu u}$	Q_{eB}	$(\bar{l}_p \sigma^{\mu\nu} e_r) \varphi B_{\mu\nu}$	$Q^{(3)}_{arphi l}$	$(\varphi^{\dagger}i \overset{\leftrightarrow}{D}{}^{I}_{\mu} \varphi)(\bar{l}_{p} \tau^{I} \gamma^{\mu} l_{r})$
$Q_{\varphi W}$	$\varphi^{\dagger} \varphi W^{I}_{\mu u} W^{I \mu u}$	Q_{uG}	$(\bar{q}_p \sigma^{\mu\nu} T^A u_r) \widetilde{\varphi} G^A_{\mu\nu}$	$Q_{\varphi e}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{e}_{p}\gamma^{\mu}e_{r})$
$Q_{\varphi \widetilde{W}}$	$arphi^\dagger arphi \widetilde{W}^I_{\mu u} W^{I\mu u}$	Q_{uW}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \tau^I \widetilde{\varphi} W^I_{\mu\nu}$	$Q^{(1)}_{arphi q}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{q}_{p}\gamma^{\mu}q_{r})$
$Q_{\varphi B}$	$\varphi^{\dagger}\varphiB_{\mu u}B^{\mu u}$	Q_{uB}	$(\bar{q}_p \sigma^{\mu\nu} u_r) \widetilde{\varphi} B_{\mu\nu}$	$Q^{(3)}_{\varphi q}$	$\left(\varphi^{\dagger} i \overleftrightarrow{D}_{\mu}^{I} \varphi) (\bar{q}_{p} \tau^{I} \gamma^{\mu} q_{r}) \right)$
$Q_{arphi \widetilde{B}}$	$\varphi^{\dagger} \varphi \widetilde{B}_{\mu u} B^{\mu u}$	Q_{dG}	$(\bar{q}_p \sigma^{\mu\nu} T^A d_r) \varphi G^A_{\mu\nu}$	$Q_{\varphi u}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}u_{r})$
$Q_{\varphi WB}$	$\varphi^\dagger \tau^I \varphi W^I_{\mu\nu} B^{\mu\nu}$	Q_{dW}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \tau^I \varphi W^I_{\mu\nu}$	$Q_{\varphi d}$	$(\varphi^{\dagger}i\overleftrightarrow{D}_{\mu}\varphi)(\bar{d}_{p}\gamma^{\mu}d_{r})$
$Q_{\varphi \widetilde{W}B}$	$\varphi^{\dagger} \tau^{I} \varphi \widetilde{W}^{I}_{\mu \nu} B^{\mu \nu}$	Q_{dB}	$(\bar{q}_p \sigma^{\mu\nu} d_r) \varphi B_{\mu\nu}$	$Q_{\varphi ud}$	$i(\widetilde{\varphi}^{\dagger}D_{\mu}\varphi)(\bar{u}_{p}\gamma^{\mu}d_{r})$

'Warsaw' basis [Grzadkowski et al.; JHEP 1010 (2010) 085]

K. Mimasu, 22/05/2018

Top & EW SMEFT@NLO

SMEFT - 4 fermions

	$(\bar{L}L)(\bar{L}L)$		$(\bar{R}R)(\bar{R}R)$	$(\bar{L}L)(\bar{R}R)$		
Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Q_{ee}	$(\bar{e}_p \gamma_\mu e_r)(\bar{e}_s \gamma^\mu e_t)$	Q_{le}	$(\bar{l}_p \gamma_\mu l_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{uu}	$(\bar{u}_p \gamma_\mu u_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{lu}	$(\bar{l}_p \gamma_\mu l_r)(\bar{u}_s \gamma^\mu u_t)$	
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{dd}	$(\bar{d}_p \gamma_\mu d_r) (\bar{d}_s \gamma^\mu d_t)$	Q_{ld}	$(\bar{l}_p \gamma_\mu l_r) (\bar{d}_s \gamma^\mu d_t)$	
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r)(\bar{q}_s \gamma^\mu q_t)$	Q_{eu}	$(\bar{e}_p \gamma_\mu e_r)(\bar{u}_s \gamma^\mu u_t)$	Q_{qe}	$(\bar{q}_p \gamma_\mu q_r) (\bar{e}_s \gamma^\mu e_t)$	
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	Q_{ed}	$(\bar{e}_p \gamma_\mu e_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{u}_s \gamma^\mu u_t)$	
		$Q_{ud}^{(1)}$	$(\bar{u}_p \gamma_\mu u_r) (\bar{d}_s \gamma^\mu d_t)$	$Q_{qu}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{u}_s \gamma^\mu T^A u_t)$	
		$Q_{ud}^{(8)}$	$(\bar{u}_p \gamma_\mu T^A u_r) (\bar{d}_s \gamma^\mu T^A d_t)$	$Q_{qd}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{d}_s \gamma^\mu d_t)$	
				$Q_{qd}^{(8)}$	$(\bar{q}_p \gamma_\mu T^A q_r) (\bar{d}_s \gamma^\mu T^A d_t)$	
$(\bar{L}R)$	$(\bar{R}L)$ and $(\bar{L}R)(\bar{L}R)$	B-violating				
Q_{ledq}	$(ar{l}_p^j e_r)(ar{d}_s q_t^j)$	Q_{duq}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[\left(d_{p}^{\alpha}\right)\right]$	$^{T}Cu_{r}^{\beta}]$	$\left[(q_s^{\gamma j})^T C l_t^k\right]$	
$Q_{quqd}^{(1)}$	$(\bar{q}_p^j u_r) \varepsilon_{jk} (\bar{q}_s^k d_t)$	Q_{qqu}	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(u_s^{\gamma})^T C e_t\right]$			
$Q_{quqd}^{(8)}$	$(\bar{q}_p^j T^A u_r) \varepsilon_{jk} (\bar{q}_s^k T^A d_t)$	$Q_{qqq}^{(1)}$	$\varepsilon^{\alpha\beta\gamma}\varepsilon_{jk}\varepsilon_{mn}\left[(q_p^{\alpha j})^T C q_r^{\beta k}\right]\left[(q_s^{\gamma m})^T C l_t^n\right]$			
$Q_{lequ}^{(1)}$	$(\bar{l}_p^j e_r) \varepsilon_{jk} (\bar{q}_s^k u_t)$	$Q_{qqq}^{(3)}$	$\varepsilon^{\alpha\beta\gamma}(\tau^{I}\varepsilon)_{jk}(\tau^{I}\varepsilon)_{mn}\left[(q_{p}^{\alpha j})^{T}Cq_{r}^{\beta k}\right]\left[(q_{s}^{\gamma m})^{T}Cl_{t}^{n}\right]$			
$Q_{lequ}^{(3)}$	$(\bar{l}_p^j \sigma_{\mu\nu} e_r) \varepsilon_{jk} (\bar{q}_s^k \sigma^{\mu\nu} u_t)$	Q_{duu}	$\varepsilon^{lphaeta\gamma}\left[(d_p^{lpha})^T ight]$	Cu_r^{β}	$\left[(u_s^{\gamma})^T C e_t\right]$	

Flavor indices = most of the 2499!

[Grzadkowski et al.; JHEP 1010 (2010) 085]

Top & EW SMEFT@NLO

(I) : Individual(M) : Marginalised[TeV⁻²]

[Buckley et al.; JHEP 1604 (2016) 015] [Butter et al.; JHEP 1607 (2016) 152] [Alioli et al.; JHEP 1705 (2017) 086] [Zhang et al.; PRD 86 (2012) 014024]

Existing limits

Op.	TF (I)	TF (M)	RHCC (I) tree/loop	SFitter (I)	PEWM ²
\mathcal{O}_W				[-0.18, 0.18]	
\mathcal{O}_{HW}				[-0.32, 1.62]	
\mathcal{O}_{HB}				[-2.11, 1.57]	
$\mathcal{O}_{\varphi W}$				[-0.39, 0.33]	
$\mathcal{O}_{\varphi tb}$			[-5.28, 5.28]/[-0.046, 0.040]		
$\mathcal{O}^{(3)}_{arphi Q}$	[-2.59, 1.50]	[-4.19, 2.00]			-1.0 ± 2.7 3
$\mathcal{O}_{\varphi Q}^{(1)}$	[-3.10, 3.10]				1.0 ± 2.7
$\mathcal{O}_{\varphi t}$	[-9.78, 8.18]				1.8 ± 3.8
\mathcal{O}_{tW}	[-2.49, 2.49]	[-3.99, 3.40]			-0.4 ± 2.4
\mathcal{O}_{tB}	[-7.09, 4.68]				4.8 ± 10.6
\mathcal{O}_{tG}	[-0.24, 0.53]	[-1.07, 0.99]			
$\mathcal{O}_{t\varphi}$				[-18.2, 6.30]	
$\mathcal{O}_{Qq}^{(3,1)}$	[-0.40, 0.60]	[0.66, 1.24]			
$\mathcal{O}_{Qq}^{(3,8)}$	[-4.90, 3.70]	[6.06, 6.73]			

$c_{tarphi} \subset [-6.5, 1.3]$

Combination of ttH @ 13 TeV

[CMS; CMS-PAS-HIG-17-003] [CMS; CMS-PAS-HIG-17-004] [ATLAS; CERN-EP-2017-281]

$c_{Qq}^{(3,8)} \subset [-1.40, 1.20]$

Combination of LHC single-top

[CMS; JHEP 12 (2012) 035] [ATLAS; PRD 90 (2014) 11, 112006] [CMS; JHEP 09 (2016) 027] [ATLAS; JHEP 04 (2017) 086] [ATLAS; EPJC 77 (2017) 8, 531] [ATLAS; PLB 756 (2016) 228 248] EW SMEFT@NLO

K. Mimasu, 22/05/2018

30

[Mantani, Maltoni, KM; in preparation] [Dror et al.; JHEP 01 (2016) 071]

Anatomy of tZj

bW	→ tZ
----	------

$\lambda_b, \lambda_W, \lambda_t, \lambda_Z$	SM	$\mathcal{O}^{(3)}_{\omega O}$	$\mathcal{O}^{(1)}_{\omega O}$	$\mathcal{O}_{\omega t}$	\mathcal{O}_{tB}	\mathcal{O}_{tW}	\mathcal{O}_W	\mathcal{O}_{HW}	\mathcal{O}_{HB}
-,0,-,0	s^0	$\sqrt{s(s+t)}$	-	_	_	s^0	<i>s</i> ⁰	$\sqrt{s(s+t)}$	s^0
-, 0, +, 0	$\frac{1}{\sqrt{s}}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$m_Z \sqrt{-t}$	$\frac{m_W(2s+3t)}{\sqrt{-t}}$	_	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$
-, -, -, 0	$\frac{1}{\sqrt{s}}$	$m_W \sqrt{-t}$	_	_	_	_	$\frac{m_W(s+2t)}{\sqrt{-t}}$	$m_W \sqrt{-t}$	$\frac{1}{\sqrt{s}}$
-, -, +, 0	$\frac{1}{s}$	s^0	s^0	s^0	s^0	$\sqrt{s(s+t)}$	s^0	s^0	$\frac{1}{\sqrt{8}}$
-, 0, -, -	$\frac{1}{\sqrt{s}}$	$m_W \sqrt{-t}$	_	_	$m_t \sqrt{-t}$	$m_t\sqrt{-t}$	$\frac{m_W(s+2t)}{\sqrt{-t}}$	$\frac{m_W(ss_W^2+2t)}{\sqrt{-t}}$	$\frac{m_W s}{\sqrt{-t}}$
-, 0, -, +	$\frac{1}{\sqrt{s}}$	_	_	_	_	_	$\frac{m_W(s+t)}{\sqrt{-t}}$	$\frac{m_W(s+t)}{\sqrt{-t}}$	$\frac{m_W(s+t)}{\sqrt{-t}}$
-, 0, +, -	s^0	s^0	s^0	_	_	s^0	s^0	s^0	s^0
-, 0, +, +	$\frac{1}{s}$	s^0	s^0	s^0	$\sqrt{s(s+t)}$	$\sqrt{s(s+t)}$	-	s^0	s^0
-, +, -, 0	$\frac{1}{\sqrt{s}}$	-	-	_	-		$\frac{m_W(s+t)}{\sqrt{-t}}$	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{s}}$
-, +, +, 0	s^0	s^0	_	_	_	s^0	_	s^0	$\frac{1}{s}$
-,-,-,-	s^0	s^0	s^0	_	s^0	s^0	s^0	s^0	s^0
-, -, -, +	$\frac{1}{s}$	-	-	-	_	-	$\sqrt{s(s+t)}$	s^0	s^0
-, -, +, -	$\frac{1}{\sqrt{s}}$	-	_	_	_	$\frac{m_Z\left(s_W^2t - 3c_W^2(2s+t)\right)}{\sqrt{-t}}$	_	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{s}}$
-, -, +, +	-	-	_	_	$m_W \sqrt{-t}$	$m_Z \sqrt{-t}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$
-, +, -, -	$\frac{1}{s}$	-	_	_	_	_	$\sqrt{s(s+t)}$	s^0	s^0
-, +, -, +	s^0	s^0	s^0	-	_	-	_	s^0	s^0
-, +, +, -	$\frac{1}{\sqrt{s}}$	-	-	-	-	-	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$	$m_t \sqrt{-t}$
-, +, +, +	$\frac{1}{\sqrt{s}}$	-	_	_	_	$\frac{m_W(s+t)}{\sqrt{-t}}$	_	$\frac{1}{\sqrt{s}}$	$\frac{1}{\sqrt{s}}$

${\cal O}_{_{arphi tb}},\lambda_b,\lambda_t=+,+$						
AW	0	+	_			
0	$\sqrt{s(s+t)}$	$m_W \sqrt{-t}$	_			
+	$m_Z \sqrt{-t}$	s^0	_			
_	_	_	s^0			

$\mathcal{O}_{arphi tb},$.	${\cal O}_{_{arphi tb}},\lambda_b,\lambda_t=+,-$						
λ_{Z}	0	+	_				
0	_	_	s^0				
+	s^0	_	_				
_	s^0	_	—				

Consistent with non-interference theorem in $2 \rightarrow 2$

[Cheung & Shen; PRL 115 (2015) 071601] [Azatov, Contino & Riva; PRD 95 (2017) 065014]

Non-interference

- Sometimes, accidentally have $\sigma^{(6)}_{INT} < \sigma^{(6)}_{SQ}$
 - Non-interference by *e.g.* helicity selection rules in the high energy limit
- High energy theorem

[Cheung & Shen; PRL 115 (2015) 071601] [Azatov, Contino & Riva; PRD 95 (2017) 065014]

 Many 2 → 2 amplitudes involving at least one transverse gauge boson mediated by D=6 operators do not interfere with the SM

Interference?	A_4	$ h(A_4^{\rm SM}) $	$ h(A_4^{\mathrm{BSM}}) $
	VVVV	0	4,2
×	$VV\phi\phi$	0	2
	$VV\psi\psi$	0	2
	$V\psi\psi\phi$	0	2
	$\psi\psi\psi\psi\psi$	2,0	2,0
\checkmark	$\psi\psi\phi\phi$	0	0
	$\phi\phi\phi\phi$	0	0

Total Helicity

- V = Transverse vector
- ϕ = Longitudinal vector or Higgs
- $\Psi = Fermion$

Interference can be recovered: finite mass effects higher order corrections higher multiplicity $(2\rightarrow 3, 4, ...)$

> [Panico, Riva & Wulzer; CERN-TH-2017-85] [Azatov, et al. LHEP 1710 (2017) 027]

> > Top & EW SMEFT@NLO

Inclusive results: tHj

Cancellations over the PS appear/disappear for the interference contributions. \rightarrow Between top and antitop \rightarrow Strange *K*-factors

LHC@13 TeV

→Large scale uncert.

σ_{ij}	$c_{arphi W}$	c_{tarphi}	c_{tW}	$c^{(3)}_{arphi Q}$	$c_{\scriptscriptstyle HW}$	c_{u31}	c_{u38}
$c_{arphi W}$	—	2.752(1.29)	12.88(0.61)	6.384(0.65)	-0.43 (-0.17)	_	_
$c_{_{tarphi}}$	2.514(1.35)	_	-1.912(-0.27)	-4.168 (-1.25)	-0.699 (-0.80)	_	_
c_{tW}	10.54 (0.68)	-1.772(-0.32)	_	-26.24 (-0.79)	3.988(0.46)	_	_
$c^{(3)}_{arphi Q}$	5.12(0.67)	-3.584(-1.31)	-11.2 (-0.49)	_	4.864(1.21)	_	_
$c_{\scriptscriptstyle HW}$	-0.402 (-0.18)	-0.6138 (-0.78)	3.124(0.47)	3.5784(1.10)	_	_	_
c_{u31}	-13.475(-0.71)	5.16(0.76)	-19.1 (-0.34)	-15.44 (-0.55)	-6.96 (-0.86)	_	4.525(0.15)
c_{u38}	_	_	_	_	_	_	_

 $pp \to t(\bar{t}) H j$

Top & EW SMEFT@NLO

 $pp \to t(\bar{t}) Z j$

Inclusive results: tZj

LHC@13 TeV

σ [fb]	LO	NLO	K-factor
σ_{SM}	$660.8(4)^{+13.7\%}_{-9.6\%}\pm9.7\%$	$839.1(5)^{+1.1\%}_{-5.1\%}\pm1.0\%$	1.27
$\sigma_{\scriptscriptstyle W}$	$-7.87(7)^{+8.4\%}_{-12.6\%}\pm9.7\%$	$-8.77(8)^{+8.5\%}_{-4.3\%}\pm1.1\%$	1.12
$\sigma_{\scriptscriptstyle W,W}$	$34.58(3)^{+8.2\%}_{-3.9\%}\pm13.0\%$	$43.80(4)^{+6.6\%}_{-15.1\%}\pm2.8\%$	1.27
$\sigma_{\scriptscriptstyle tB}$	$2.23(2)^{+14.7[0.9]\%}_{-10.7[1.0]\%}\pm 9.4\%$	$2.94(2)^{+2.3[0.4]\%}_{-3.0[0.7]\%}\pm1.1\%$	1.32
$\sigma_{\scriptscriptstyle tB,tB}$	$2.833(2)^{+10.5[1.7]\%}_{-6.3[1.9]\%} \pm 11.1\%$	$4.155(3)^{+4.7[0.9]\%}_{-10.1[1.4]\%}\pm1.7\%$	1.47
$\sigma_{_{tW}}$	$2.66(4)^{+18.8[0.9]\%}_{-15.3[1.0]\%}\pm 11.4\%$	$13.0(1)^{+15.8[2.1]\%}_{-22.8[0.0]\%}\pm 1.2\%$	4.90
$\sigma_{\scriptscriptstyle tW,tW}$	$48.16(4)^{+10.0[1.7]\%}_{-5.8[1.9]\%}\pm11.3\%$	$80.00(4)^{+7.9[1.3]\%}_{-14.7[1.6]\%}\pm1.9\%$	1.66
$\sigma_{_{arphi dtR}}$	$4.20(1)^{+14.9\%}_{-10.9\%}\pm9.3\%$	$4.94(2)^{+3.4\%}_{-6.7\%}\pm1.0\%$	1.18
$\sigma_{_{\varphi dtR,\varphi dtR}}$	$0.3326(3)^{+13.6\%}_{-9.5\%}\pm 9.6\%$	$0.4402(5)^{+3.7\%}_{-9.3\%}\pm 1.0\%$	1.32
$\sigma_{_{arphi Q}}$	$14.98(2)^{+14.5\%}_{-10.5\%}\pm 9.4\%$	$18.07(3)^{+2.3\%}_{-1.6\%}\pm1.0\%$	1.21
$\sigma_{_{arphi Q,arphi Q}}$	$0.7442(7)^{+14.1\%}_{-10.0\%}\pm9.5\%$	$1.028(1)^{+2.8\%}_{-7.3\%}\pm 1.0\%$	1.38
$\sigma_{_{\varphi Q}(3)}$	$130.04(8)^{+13.8\%}_{-9.8\%}\pm9.5\%$	$161.4(1)^{+0.9\%}_{-4.8\%}\pm1.0\%$	1.24
$\sigma_{_{\varphi Q}(3),_{\varphi Q}(3)}$	$17.82(2)^{+11.7\%}_{-7.5\%}\pm 10.5\%$	$23.98(2)^{+3.7\%}_{-9.3\%}\pm 1.4\%$	1.35
$\sigma_{_{arphi tb}}$	0	0	-
$\sigma_{_{arphi tb,arphi tb}}$	$2.949(2)^{+10.5\%}_{-6.2\%}\pm 11.1\%$	$4.154(4)^{+5.1\%}_{-11.2\%}\pm1.8\%$	1.41
$\sigma_{\scriptscriptstyle HW}$	$-5.16(6)^{+7.8\%}_{-12.0\%}\pm10.5\%$	$-6.88(8)^{+6.4\%}_{-2.0\%}\pm1.4\%$	1.33
$\sigma_{\scriptscriptstyle HW,HW}$	$0.912(2)^{+9.4\%}_{-5.2\%}\pm 12.0\%$	$1.048(2)^{+5.2\%}_{-12.8\%}\pm 2.1\%$	1.15
$\sigma_{\scriptscriptstyle HB}$	$-3.015(9)^{+9.9\%}_{-13.9\%}\pm9.5\%$	$-3.76(1)^{+5.2\%}_{-1.0\%}\pm1.0\%$	1.25
$\sigma_{{}_{HB,HB}}$	$0.02324(6)^{+12.7\%}_{-8.5\%}\pm9.9\%$	$0.02893(6)^{+2.3\%}_{-7.5\%}\pm 1.1\%$	1.24
$\sigma_{\scriptscriptstyle tG}$	$0.45(2)^{+93.0}_{-148}$	$^{9\%}_{-8\%}\pm 4.9\%$	_
$\sigma_{\iota G,\iota G}$	$2.251(4)^{+20}_{-30}$	$^{.9\%}_{.0\%}\pm2.5\%$	_
$\sigma_{\scriptscriptstyle Qq^{(3,1)}}$	$-393.5(5)^{+8.1\%}_{-12.3\%}\pm10.0\%$	$-498(1)^{+8.9\%}_{-3.2\%}\pm1.2\%$	1.26
$\sigma_{_{Qq}(3,1),Qq}{}_{(3,1)}$	$462.25(3)^{+8.4\%}_{-4.1\%}\pm12.7\%$	$545.50(5)^{+7.4\%}_{-17.4\%}\pm2.9\%$	1.18
$\sigma_{\scriptscriptstyle Qq(3,8)}$	0	$-0.9(3)^{+23.3\%}_{-26.3\%}\pm19.2\%$	-
$\sigma_{_{Qq}(3,8),Qq}{}_{(3,8)}$	$102.73(5)^{+8.4\%}_{-4.1\%}\pm 12.7\%$	$111.18(5)^{+9.3\%}_{-18.4\%}\pm2.8\%$	1.08

tZj ~ 10 times bigger than tHj

NLO corrections: similar features to tHj

EFT contributions smaller relative to SM

Higgs always radiated from top/EW gauge boson Z boson can also come from light quark leg