Kaon CP violation

Flavour Anomalies: Phenomenology and BSM Interpretations

Ulrich Nierste

Institute for Theoretical Particle Physics Karlsruhe Institute of Technology

Federal Ministry of Education and Research

Planck 2018, Bonn, 23 May 2018

Introduction	$b ightarrow s \mu^+ \mu^-$	b ightarrow c au u	Kaon CP violation	Muon <i>g</i> -2	Summary		
Contents							

Introduction

 $b
ightarrow {m s} \mu^+ \mu^-$

 $\pmb{b}\rightarrow\pmb{c}\tau\nu$

Kaon CP violation

Muon g-2

Summary

Flavour physics

studies transitions between fermions of different generations.

flavour = fermion species

$$\begin{pmatrix} u_{L}, u_{L}, u_{L} \\ d_{L}, d_{L}, d_{L} \end{pmatrix} \begin{pmatrix} c_{L}, c_{L}, c_{L} \\ s_{L}, s_{L}, s_{L} \end{pmatrix} \begin{pmatrix} t_{L}, t_{L}, t_{L} \\ b_{L}, b_{L}, b_{L} \end{pmatrix}$$

$$\begin{matrix} u_{R}, u_{R}, u_{R} \\ d_{R}, d_{R}, d_{R} \end{pmatrix} \begin{pmatrix} c_{R}, c_{R}, c_{R} \\ s_{R}, s_{R}, s_{R} \end{pmatrix} \begin{pmatrix} t_{R}, t_{R}, t_{R} \\ b_{R}, b_{R}, b_{R} \end{pmatrix}$$

$$\begin{pmatrix} \nu_{e,L} \\ e_{L} \end{pmatrix} \begin{pmatrix} \nu_{\mu,L} \\ \mu_{L} \end{pmatrix} \begin{pmatrix} \nu_{\tau,L} \\ \tau_{L} \end{pmatrix}$$

$$e_{R} \qquad \mu_{R} \qquad \tau_{R}$$

Standard Model (SM): Flavour changes are governed by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix V.

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Standard Model (SM): Flavour changes are governed by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix V.

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

 The Yukawa interaction of the Higgs field is the only source of transitions between guarks of different generations (flavour violation) in the SM.

Standard Model (SM): Flavour changes are governed by the unitary Cabibbo-Kobayashi-Maskawa (CKM) matrix V.

$$V = egin{pmatrix} V_{ud} & V_{us} & V_{ub} \ V_{cd} & V_{cs} & V_{cb} \ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

- The Yukawa interaction of the Higgs field is the only source of transitions between guarks of different generations (flavour violation) in the SM.
- Diagonalising the Yukawa matrices moves the flavour violation into the couplings of the W boson. The strength is encoded in V, i.e. the piece of the Lagrangian describing the $W - \overline{u} - b$ couplings reads

$$L_{W\overline{u}b} = \frac{g_2}{\sqrt{2}} \left[\overline{u}_L V_{ub} \gamma^\mu b_L W^+_\mu + \overline{b}_L V^*_{ub} \gamma^\mu u_L W^-_\mu \right]$$

Introduction $b \rightarrow s\mu^+\mu^ b \rightarrow c\tau\nu$ Kaon CP violation Muon g-2 Summary Some flavoured mesons

charged:

 $\begin{array}{lll} \mathcal{K}^+ \sim \overline{s}u, & \mathcal{D}^+ \sim c\overline{d}, & \mathcal{D}_s^+ \sim c\overline{s}, & \mathcal{B}^+ \sim \overline{b}u, & \mathcal{B}_c^+ \sim \overline{b}c, \\ \mathcal{K}^- \sim s\overline{u}, & \mathcal{D}^- \sim \overline{c}d, & \mathcal{D}_s^- \sim \overline{c}s, & \mathcal{B}^- \sim b\overline{u}, & \mathcal{B}_c^- \sim b\overline{c}, \end{array}$

neutral:

$K \sim \overline{s}d$,	$D\sim c\overline{u},$	$B_d \sim \overline{b}d,$	$B_{s}\sim \overline{b}s,$
$\overline{K} \sim s\overline{d},$	$\overline{D}\sim\overline{c}u,$	$\overline{B}_{d}\sim b\overline{d},$	$\overline{B}_{s}\sim b\overline{s},$

The neutral K, D, B_d and B_s mesons mix with their antiparticles, \overline{K} , \overline{D} , \overline{B}_d and \overline{B}_s thanks to the weak interaction (quantum-mechanical two-state systems). Introduction

 $b \rightarrow s \mu^+ \mu^-$

 $b \rightarrow c \tau \nu$

Kaon CP violation

Muon g

Summary

Flavour-changing neutral current (FCNC) processes

A process describing transitions between quarks of the same electric charge (e.g. $s \rightarrow d$, $b \rightarrow s$, or $c \rightarrow u$) is called FCNC process.

In the SM FCNC processes are a quantum effect, involving a loop Feynman diagram.

Examples:

penguin diagram

Flavour physics is sensitive to virtual effects of heavy new physics.

Flavour-changing neutral current (FCNC) interactions probe scales up to 100 TeV and above, because in the Standard Model several suppression factors pile up:

- electroweak loop.
- small CKM elements, e.g. $|V_{ts}| = 0.04$, $|V_{td}| = 0.01$.
- Glashow-Iliopoulos-Maiani (GIM) suppression $\propto (m_c^2 - m_{\mu}^2)/M_{W}^2$, $(m_s^2 - m_d^2)/M_W^2$ in K and D decays.
- helicity suppression $\propto m_b/M_W$ in radiative and leptonic *B* decays.

Cabibbo-Kobayashi-Maskawa (CKM) matrix:

$$V = \begin{pmatrix} V_{ud} & V_{us} & V_{ub} \\ V_{cd} & V_{cs} & V_{cb} \\ V_{td} & V_{ts} & V_{tb} \end{pmatrix}$$

Generic models of new physics typically have new sources of unsuppressed FCNC transitions.

Generic models of new physics typically have new sources of unsuppressed FCNC transitions. Examples:

extra Higgses \Rightarrow Higgs-mediated FCNC's at tree-level , helicity suppression possibly absent, squarks/gluinos \Rightarrow FCNC quark-squark-gluino coupling, no CKM/GIM suppression, gauged U(1)' \Rightarrow FCNC couplings of an extra Z', SU(2)_R gauge bosons \Rightarrow helicity suppression absent

Most spectacular: Charged lepton FCNC decays such as $\mu \rightarrow e\gamma$: If you observe them, it's new physics!

Introduction

 $\rightarrow S\mu^+\mu^-$

 $b \rightarrow c \tau \iota$

Kaon CP violatio

Muon

Summary

Methodology

To predict the decay rate of some meson decay triggered by $b \rightarrow s\bar{q}q$ calculate an effective hamiltonian:

$$H = \frac{4G_F V_{ub} V_{us}^*}{\sqrt{2}} \sum_{j=1,2} C_j Q_j^u + \frac{4G_F V_{cb} V_{cs}^*}{\sqrt{2}} \sum_{j=1,2} C_j Q_j^c - \frac{4G_F V_{tb} V_{ts}^*}{\sqrt{2}} \sum_{j\geq 3} C_j Q_j$$

Here: G_F : Fermi constant C_j : Wilson coefficients = effective couplings Q_j : effective operators

Matching calculations determine the coefficients C_i :

All dependence on the masses of heavy particles such as the top quark, W boson, squarks, Z' bosons, leptoquarks, \ldots resides in the Wilson coefficients C_i .

For radiative decays $b \rightarrow s\gamma$ and semileptonic decays $b \rightarrow s \ell^+ \ell^-$ need more operators.

For radiative decays $b \rightarrow s\gamma$ and semileptonic decays $b \rightarrow s \ell^+ \ell^-$ need more operators.

Next step: Calculate decay amplitude for $B \rightarrow f$ decay with e.g. $f = K\pi, K^*\gamma, K^*\mu^+\mu^-, \ldots$

$$\mathcal{A}(B \to f) = \frac{4G_F V_{ub} V_{us}^*}{\sqrt{2}} \sum_{j=1,2} C_j \underbrace{\langle f | Q_j^u | B \rangle}_{j=1,2} + \dots$$
hadronic matrix element contains strong interaction effects

Heavy new physics changes the Wilson coefficients and leads to correlated effects in many different B^+ , B_d , B_s decays.

Bottom-up approach:

Step 1: Fit the Wilson coefficients to all data and identify those which deviate from their SM predictions.

Introduction	$b ightarrow s \mu^+ \mu^-$	b ightarrow c au u	Kaon CP violation	Muon <i>g</i> -2	Summary	
New physics						

Heavy new physics changes the Wilson coefficients and leads to correlated effects in many different B^+ , B_d , B_s decays.

Bottom-up approach:

- Step 1: Fit the Wilson coefficients to all data and identify those which deviate from their SM predictions.
- Step 2: Study possible new-physics mechanism which puts effects into desired coefficients (e.g. exchange of leptoquark, Z'...).

Introduction	$b ightarrow s \mu^+ \mu^-$	b ightarrow c au u	Kaon CP violation	Muon <i>g</i> -2	Summary	
New physics						

Heavy new physics changes the Wilson coefficients and leads to correlated effects in many different B^+ , B_d , B_s decays.

Bottom-up approach:

- Step 1: Fit the Wilson coefficients to all data and identify those which deviate from their SM predictions.
- Step 2: Study possible new-physics mechanism which puts effects into desired coefficients (e.g. exchange of leptoquark, Z'...).
- Step 3: Construct reasonable UV-complete theories.

Introduction

 $b \rightarrow s \mu^+ \mu^ b \rightarrow c \tau \nu$

Kaon CP violation

2 Accelerators Find Particles That **May Break Known Laws of Physics**

The LHC and the Belle experiment have found particle decay patterns that violate the Standard Model of particle physics, confirming earlier observations at the BaBar facility

By Clara Moskowitz | September 9, 2015 | Véalo en español

Hints for **New Physics** in flavour observables

Kaon CP violation

Flavour anomaly 1: $b \rightarrow s \mu^+ \mu^-$

Decays governed by $b \rightarrow s\mu^+\mu^-$:

- $B \rightarrow K \mu^+ \mu^-$
- $B \rightarrow K^* \mu^+ \mu^-$
- $B_s \rightarrow \Phi \mu^+ \mu^-$
- $B_s \rightarrow \mu^+ \mu^-$

itroduction $b o s\mu^+\mu^-$ b o c au
u Kaon CP violation ML

Flavour anomaly 1: $b \rightarrow s \mu^+ \mu^-$

Decays governed by $b \rightarrow s\mu^+\mu^-$:

- $B \rightarrow K \mu^+ \mu^-$
- $B \rightarrow K^* \mu^+ \mu^-$
- $B_s \rightarrow \Phi \mu^+ \mu^-$
- $B_s \rightarrow \mu^+ \mu^-$

The decay $B \to K^* \mu^+ \mu^-$ permits the measurement of angular observables, defined in terms of angles within and between the $K^* \to K\pi$ and $\mu^+\mu^-$ decay planes. One of those, called P'_5 , deviates from the SM prediction by more than 3σ in the LHCb and Belle experiments.

oduction $b o s \mu^+ \mu^ b o c au \imath$

Kaon CP violation

tion Muo

Summ

Flavour anomaly 1: $b ightarrow s \mu^+ \mu^-$

Decays governed by $b \rightarrow s\mu^+\mu^-$:

- $B \rightarrow K \mu^+ \mu^-$
- $B \rightarrow K^* \mu^+ \mu^-$
- $B_s \rightarrow \Phi \mu^+ \mu^-$
- $B_s \rightarrow \mu^+ \mu^-$

The decay $B \to K^* \mu^+ \mu^-$ permits the measurement of angular observables, defined in terms of angles within and between the $K^* \to K\pi$ and $\mu^+ \mu^-$ decay planes. One of those, called P'_5 , deviates from the SM prediction by more than 3σ in the LHCb and Belle experiments.

The LHCb data for the branching-fraction ratios $\frac{B(B \to K\mu^+\mu^-)}{B(B \to Ke^+e^-)} \text{ and } \frac{B(B \to K^*\mu^+\mu^-)}{B(B \to K^*e^+e^-)} \text{ are too small by}$ 2.3–2.6 σ in some bins of the lepton invariant mass q^2 . $B(B_s \to \Phi\mu^+\mu^-)$ is smaller than the SM prediction by 2.2 σ . Effective hamiltonian

$$H = -\frac{4G_F V_{tb} V_{ts}^*}{\sqrt{2}} \sum_{\ell,\ell=e,\mu,\tau} \left[C_9^{\ell\ell} O_9^{\ell\ell} + C_{10}^{\ell\ell} O_{10}^{\ell\ell} \right] + \dots$$

We are interested in the operators

$$O_{9}^{\ell\ell} = \frac{\alpha}{4\pi} [\bar{s}_{L} \gamma^{\mu} b_{L}] [\bar{\ell} \gamma_{\mu} \ell] \qquad O_{10}^{\ell\ell} = \frac{\alpha}{4\pi} [\bar{s}_{L} \gamma^{\mu} b_{L}] [\bar{\ell} \gamma_{\mu} \gamma^{5} \ell]$$

The Wilson coefficients $C_9^{\ell\ell}$ and $C_{10}^{\ell\ell}$ can be reliably calculated from the *Z*-penguin diagram and other diagrams.

In the Standard Model

$$C_{9,10} \equiv C_{9,10}^{ee} = C_{9,10}^{\mu\mu} = C_{9,10}^{ au au}.$$

Flavour universality of the weak interaction!

A global fit to all relevant observables (including those which comply with the SM prediction) consistently point to new physics with $C_9^{\mu\mu, NP} \approx -\frac{1}{4}C_9^{SM}$ and possibly also with NP contributions to $C_{10}^{\mu\mu}$.

Plot from: Capdevila, Crivellin, Descotes-Genon. Matias. Virto 2017. Several other analyses in 2017.

Methodology: In a global fit of the Wilson coefficients to all data one performs a likelihood ratio test, comparing the likelihood of the best-fit point to that of the SM scenario.

Result: For scenarios in which the new physics is assumed to be only in $C_{9,10}^{\mu\mu}$ (and possibly in the coefficients $C_{9,10}^{\mu\mu\prime}$ of the chirality-flipped operators), the statistical significance of the new-physics hypothesis is between 5.0 σ and 5.7 σ . The sign and magnitude of the deviation is consistent in all observables, and observables insensitive to $C_{9,10}^{\mu\mu}$ are measured SM-like. Capdevila, Crivellin, Descotes-Genon, Matias, Virto 2017.

The first evidence for this $b \rightarrow s \mu \mu$ anomaly was found in 2013 by Descotes-Genon, Matias, and Virto as well as Altmannshofer and Straub. Since then the initial significance of 3.9σ has steadily increased with more data.

Explanation within the SM:

The predictions for $B_s \rightarrow \Phi \mu^+ \mu^-$ and P'_5 involve hadronic physics, one needs non-perturbative methods (i) to constrain the contributions from (c, \bar{c}) resonances which convert to (μ^+,μ^-) through a virtual photon and (ii) to calculate the $B_s \rightarrow \Phi$ and $B \rightarrow K^*$ form factors.

 \Rightarrow a theory mistake can fake new physics in $C_0^{\ell\ell}!$

Explanation within the SM:

The predictions for $B_s \rightarrow \Phi \mu^+ \mu^-$ and P'_5 involve hadronic physics, one needs non-perturbative methods (i) to constrain the contributions from (c, \bar{c}) resonances which convert to (μ^+,μ^-) through a virtual photon and (ii) to calculate the $B_s \rightarrow \Phi$ and $B \rightarrow K^*$ form factors.

 \Rightarrow a theory mistake can fake new physics in $C_0^{\ell\ell}!$

But: R_{κ} and R_{κ}^{*} are theoretically clean and exhibit deviations from the SM by $3-4\sigma!$

Explanation within the SM:

The predictions for $B_s \rightarrow \Phi \mu^+ \mu^-$ and P'_5 involve hadronic physics, one needs non-perturbative methods (i) to constrain the contributions from (c, \bar{c}) resonances which convert to (μ^+,μ^-) through a virtual photon and (ii) to calculate the $B_s \rightarrow \Phi$ and $B \rightarrow K^*$ form factors.

 \Rightarrow a theory mistake can fake new physics in $C_0^{\ell\ell}!$

But: R_{κ} and R_{κ}^{*} are theoretically clean and exhibit deviations from the SM by $3-4\sigma!$

 \Rightarrow We need a conspiracy between a malign statistical fluctuation (or a mistake in electron ID) and a theoretical mistake, such that the $b \rightarrow se^+e^-$ data look SM-like!

Introduction $b \to s\mu^+\mu^ b \to c\tau\nu$ Kaon CP violation Muon g-2 Summary Flavour anomaly 2: $b \to c\tau\nu$

Decays governed by $b \rightarrow c\tau\nu$:

- $B \rightarrow D \tau \nu$
- $B \rightarrow D^* \tau \nu$
- $B_c \rightarrow J/\psi \tau \nu$

$$R(D) = rac{B(B o D au
u)}{B(B o D\mu
u)}, \quad R(D^*) = rac{B(B o D^* au
u)}{B(B o D^*\mu
u)} ext{ and }$$

 $R(J/\psi) = rac{B(B_c o J/\psi au
u)}{B(B_c o J/\psi\mu
u)} ext{ are all measured larger than }$

predicted in the SM.

Uncertainties from form factor calculations efficiently cancel in the SM predictions for these ratios.

Heavy Flavour Averaging Group (HFLAV):

$$\begin{aligned} R(D)^{\exp} &= 0.403 \pm 0.040 \pm 0.024 \\ &> R(D)^{\text{SM}} = 0.300 \pm 0.008 \qquad \text{by } 2.2\sigma \\ R(D^*)^{\exp} &= 0.304 \pm 0.013 \pm 0.007 \\ &> R(D^*)^{\text{SM}} = 0.257 \pm 0.005 \qquad \text{by } 3.3\sigma \end{aligned}$$

Combined significance: 4σ

New: QED corrections could reduce the R(D) tension to 1.8 σ . de Boer, Kitahara, Nisandžić, 1803.05881

The LHCb measurement

 $R(J/\psi) = 0.71 \pm 0.17 \pm 0.18$

is $\sim 2\sigma$ above SM estimates.

 $B \rightarrow D\tau\nu$ was identified early as a competitive analyser of charged-Higgs effects.

UN, Trine, Westhoff, PRD78 (2008) 015006 Kamenik, Mescia, PRD78 (2008) 014003

In 2012 a simultaneous explanation of R(D), $R(D^*)$, and $B(B^+ \rightarrow \tau \nu)$ data was possible in a generic two-Higgs doublet model.

Today this explanation is disfavoured by the distribution of the lepton invariant mass² (q^2), the B_c lifetime (Alonso, Grinstein, Camalich, Phys.Rev.Lett. 118 (2017) 081802) and limits from Higgs searches.

Which new physics could simultaneously explain the $b \rightarrow s\mu^+\mu^-$ and $b \rightarrow c\tau\nu$ anomalies?

Most popular: leptoquarks

Example for an explanation with scalar leptoquarks:

Introduction

Model predicts sizable enhancement of $B \to \tau \tau$ and permits the forbidden decays $B \to K \tau^{\pm} \mu^{\mp}$ and $\tau \to \mu \gamma$.

Crivellin, Müller, Ota 2017

Introduction

Alternative explanation: Z' boson from some extended gauge symmetry.

E.g. $SU(3) \times SU(3) \times U(1)$ model.

Buras et al., JHEP 1302 (2013) 023, JHEP 1402 (2014) 112 Descotes-Genon, Moscati, Ricciardi, arXiv:1711.03101

A Z' boson can have flavour-changing couplings, like $\bar{s}-b-Z'$ and mediate $b \rightarrow s\ell^+\ell^-$ at tree-level.

Problem: $B_s - \overline{B}_s$ mixing constrains this coupling and enforces a dangerously tight upper bound on the Z' mass.

di Luzio, Lenz, Kirk, arXiv:1712.06572

The decays $K \to \pi^+\pi^-$ and $K \to \pi^0\pi^0$ involve the quark decays $s \to d\overline{u}u$ and $s \to d\overline{d}d$.

Charge-parity (CP) violation in $K \to \pi\pi$ decays is characterised by two quantities, ϵ_K and ϵ'_K .

CP violation (in K, D, and B physics) is another promising track in the hunt for new physics.

Neutral K mesons:

 K_{long} and K_{short} (linear combinations of K and \overline{K}).

Dominant decay channels:

 $K_{\text{long}} \rightarrow \pi \pi \pi$ CP = -1 $K_{\text{short}} \rightarrow \pi \pi$ CP = +1

Neutral K mesons:

 K_{long} and K_{short} (linear combinations of K and \overline{K}).

Dominant decay channels:

 $K_{\text{long}} \rightarrow \pi \pi \pi$ CP = -1 $K_{\text{short}} \rightarrow \pi \pi$ CP = +1

1964: Christenson, Cronin, Fitch and Turlay observe

 $K_{\rm long} \to \pi \pi$

and therefore discover CP violation.

oduction $b \to s\mu^+\mu^ b \to c\tau\nu$ Kaon CP violation Muon g-2 Summary CP violation in $K \to \pi\pi$ Combine decay amplitudes $A(K^0 \to \pi^+\pi^-)$ and $A(K^0 \to \pi^0\pi^0)$ into

 $A_0 \equiv A(K^0 \rightarrow (\pi\pi)_{I=0})$ and $A_2 \equiv A(K^0 \rightarrow (\pi\pi)_{I=2})$,

where *I* denotes the strong isospin.

uction $b o s \mu^+ \mu^-$ b o c au
uction Kaon CP violation Muon g-2 Summary CP violation in $K o \pi \pi$

Combine decay amplitudes $A(K^0 \to \pi^+\pi^-)$ and $A(K^0 \to \pi^0\pi^0)$ into $A_0 \equiv A(K^0 \to (\pi\pi)_{l=0})$ and $A_2 \equiv A(K^0 \to (\pi\pi)_{l=2})$,

where I denotes the strong isospin.

Indirect CP violation (from $K - \overline{K}$ mixing):

 $\epsilon_{K} \equiv \frac{A(K_{\text{long}} \to (\pi\pi)_{I=0})}{A(K_{\text{short}} \to (\pi\pi)_{I=0})} = (2.228 \pm 0.011) \cdot 10^{-3} \cdot e^{i(0.97 \pm 0.02)\pi/4}$

discovered in 1964

action $b o s\mu^+\mu^ b o c\tau
u$ Kaon CP violation Muon g-2 Summary CP violation in $K o \pi\pi$

Combine decay amplitudes $A(K^0 \to \pi^+\pi^-)$ and $A(K^0 \to \pi^0\pi^0)$ into $A_0 \equiv A(K^0 \to (\pi\pi)_{l=0})$ and $A_2 \equiv A(K^0 \to (\pi\pi)_{l=2})$,

where I denotes the strong isospin.

Indirect CP violation (from $K - \overline{K}$ mixing):

$$\epsilon_{K} \equiv \frac{A(K_{\text{long}} \to (\pi\pi)_{I=0})}{A(K_{\text{short}} \to (\pi\pi)_{I=0})} = (2.228 \pm 0.011) \cdot 10^{-3} \cdot e^{i(0.97 \pm 0.02)\pi/4}$$

discovered in 1964

Direct CP violation (from decay amplitude):

$$\epsilon_{K}^{\prime} \simeq \frac{\epsilon_{K}}{\sqrt{2}} \left[\frac{\langle (\pi\pi)_{I=2} | K_{\text{long}} \rangle}{\langle (\pi\pi)_{I=0} | K_{\text{long}} \rangle} - \frac{\langle (\pi\pi)_{I=2} | K_{\text{short}} \rangle}{\langle (\pi\pi)_{I=0} | K_{\text{short}} \rangle} \right] = (16.6 \pm 2.3) \cdot 10^{-4} \cdot \epsilon_{K}$$

discovered in 1999

Introduction $b \to s \mu^+ \mu^ b \to c \tau \nu$ Kaon CP violation Muon g-2 Summary

To predict ϵ'_{K} one must calculate Im A_0 and Im A_2 .

The calculation of $\text{Im } A_0$ is very challenging and first reliable results employing lattice quantum chromo-dynamics are available only since 2015.

RBC and UKQCD Collaborations, 2015

 $b \rightarrow s \mu^+ \mu^-$

b
ightarrow c au
u

ImA_0 is dominated by gluon penguins:

Operator: $Q_6 = \overline{s}_L^j \gamma_\mu d_L^k \sum_q \overline{q}_R^k \gamma^\mu q_R^j$ Matrix element: $\langle (\pi \pi)_{I=0} | Q_6 | K^0 \rangle$

ImA₂ is dominated by photon penguin and box diagrams:

Operator: $Q_8 = \frac{3}{2} \overline{s}_L^j \gamma_\mu d_L^k \sum_q e_q \overline{q}_R^k \gamma^\mu q_R^j$ Matrix element: $\langle (\pi \pi)_{I=2} | Q_8 | K^0 \rangle$

Introduction $b \to s \mu^+ \mu^ b \to c \tau \nu$ Kaon CP violation Muon g-2 Summary

$$\frac{\epsilon'_{\kappa}}{\epsilon_{\kappa}} = (16.6 \pm 2.3) \times 10^{-4} \qquad \text{(experiments: NA62, KTeV)}$$

$$\frac{\epsilon'_{\mathcal{K}}}{\epsilon_{\mathcal{K}}} = (1.1 \pm 4.7_{\text{lattice}} \pm 2.0_{\text{other}}) \times 10^{-4} \qquad (\text{SM})$$

Kitahara, UN, Tremper, JHEP 1612 (2016) 078

The prediction uses the lattice-QCD results from RBC-UKQCD, Phys. Rev. Lett. **115** 212001 (2015).

Discrepancy with a significance of $2.8\sigma!$

It is well-known for decades that ϵ'_{K} is very sensitive to new physics, with possibly large effects in standard extensions of the SM.

Special feature of ϵ'_{κ} : Enhanced sensitivity to new physics breaking strong isospin, i.e. coupling differently to up and down quarks.

Generic models of heavy new physics typically have a larger impact on ϵ_{κ} than on ϵ'_{κ} .

 \Rightarrow Need clever ideas to suppress ϵ_{κ} .

Supersymmetry

Kaon CP violation

Supersymmetry has a mechanism

• to enhance ReA₂, because it permits strong-isospin violation through splittings between right-handed up-squark and down-squark masses (Trojan penguins),

Grossman, Kagan, Neubert 1999.

 to suppress the K-K mixing amplitude thanks to the Majorana nature of the gluinos, with negative interference of two box diagrams. Crivellin, Davidkov 2010

The supersymmetric contribution to $K-\overline{K}$ mixing vanishes for $M_{\tilde{g}} \sim 1.5 M_{\tilde{q}}$ and stays small for $M_{\tilde{g}} > 1.5 M_{\tilde{q}}$.

Introduction $b o s \mu^+ \mu^-$ b o c au
u Kaon CP violation Muon g-2 Summary

Explain ϵ'_{K}

x-axis: generic sparticle mass, $M_{\tilde{g}} = 1.5 M_S$ y-axis: right-handed up-squark mass red region: excluded by ϵ_K if $|V_{cb}|$ from inclusive decays is correct

blue dashes: delimit allowed region, if $|V_{cb}|$ from exclusive decays is correct

Teppei Kitahara, UN, Paul Tremper, Phys. Rev. Lett. 117 (2016) 091802

Introduction $b \to s \mu^+ \mu^ b \to c \tau \nu$ Kaon CP violation Muon g-2 Summary

Alternative explanation: \overline{s} -d-Z coupling from new physics, stemming typically from Z-Z' mixing. Buras et al. Eur.Phys.J. C 74; JHEP 1511, 166 (2015), 1604,071 (2016) Endo et al., Phys.Lett. B771 (2017) 37

A common explanation of anomaly 1 and 3?

The (near) future of Kaon physics:

$$\begin{split} & {\cal B}({\cal K}^+ \to \pi^+ \nu \bar{\nu}) \stackrel{\rm SM}{=} (8.3 \pm 0.3) \cdot 10^{-11} & \text{for NA62 (CERN)} \\ & {\cal B}({\cal K}_L \to \pi^0 \nu \bar{\nu}) \stackrel{\rm SM}{=} (2.9 \pm 0.2) \cdot 10^{-11} & \text{for KØTØ (J-PARC)} \end{split}$$

These branching ratios are theoretically extremely clean.

Distinguish MSSM and Z' scenarios through different footprints on the $K \to \pi \nu \bar{\nu}$ decays!

Introduction

 $S\mu^+\mu^-$

Kaon CF

Kaon CP violation

Muon g-2

Summary

Flavour anomaly 4: Muon magnetic dipole moment

The anomalous magnetic moment of the muon, $a_{\mu} \equiv (g - 2)\mu$, deviates from the SM prediction by

$$a_{\mu}^{\mathrm{SM}} - a_{\mu}^{\mathrm{exp}} = -(270 \pm 73) \cdot 10^{-11},$$

which corresponds to a discrepancy of 3.7σ .

Keshavarzia, Nomura, Teubner, 1802.02995

a_{μ} involves the magnetic operator

a_{μ} involves the magnetic operator

could be replaced by other mass in flavoured NP models

In leptoquark models $a_{\mu} \propto m_t$ possible. Leskow, D'Ambrosio, Crivellin, Müller, PRD95 (2017) 055018

Introduction $b \rightarrow s\mu^{+}\mu^{-}$ $b \rightarrow c\tau\nu$ Kaon CP violation Muon g-2 Summary Pattern of common explanations

The scalar leptoquark (LQ) explanations only work for two out of the three processes/quantities $b \rightarrow s\mu^+\mu^-$, $b \rightarrow c\tau\nu$, and a_{μ} .

Introduction	$b ightarrow s \mu^+ \mu^-$	b ightarrow c au u	Kaon CP violation	Muon $g-2$	Summary
		Other a	avenues:		

Vector leptoquarks for $b \rightarrow s\mu\mu$ and $b \rightarrow c\tau\nu$: Buttazzo,Greljo,Isidori,Marzocca, JHEP 1711 (2017) 044 Calibbi,Crivellin,Li, 1709.0069 Barbieri,Murphy,Senia, Eur.Phys.J. C77 (2017) 8 Blanke,Crivellin, 1801.07256

Extra (vector-like) fermions and scalars for $b \rightarrow s\mu\mu$ and a_{μ} : Arnan,Crivellin,Hofer,Mescia, JHEP 1704 (2017) 043

Light, feebly coupled Z' for $b \rightarrow s \mu \mu$: Sala,Straub, PLB774 (2017) 205

... and many more.

Which other manifestations could the physics underlying the flavour anomalies have?

- Spectacular effects in $B \to K^{(*)}\tau^+\tau^-$ to be probed by the upcoming Belle II experiment.
- Lepton-flavour violation: $b \to s\tau^{\pm}\mu^{\mp}$, $b \to s\tau^{\pm}e^{\mp}$, $b \to s\mu^{\pm}e^{\mp}$, $\mu \to e\gamma$, $\tau \to \mu\gamma$.
- Upcoming measurements of rare decays
 - $B(K^+ \to \pi^+ \nu \bar{\nu}) \stackrel{\text{SM}}{=} (8.3 \pm 0.3) \cdot 10^{-11}$ NA62 (CERN)
 - $B(K_{\text{long}} \to \pi^0 \nu \bar{\nu}) \stackrel{\text{SM}}{=} (2.9 \pm 0.2) \cdot 10^{-11}$ KØTØ (J-PARC)
- ATLAS/CMS discovery of a leptoquark or Z' or ...???

troduction $b o s \mu^+ \mu^-$ b o c au
u Kaon CP violation Muon g-2 Summary

- Current data on $b \to s\mu^+\mu^-$ decays point to a new interaction of the form $[\bar{s}_L\gamma^\mu b_L] [\bar{\mu}\gamma_\mu\mu]$ or $[\bar{s}_L\gamma^\mu b_L] [\bar{\mu}_L\gamma_\mu\mu_L]$. see talk by David Straub
- This evidence for new physics is robust and has steadily grown to more than 5σ over five years with new measurements. Alternative explanations require a conspiracy of experimental and/or theoretical mistakes.
- Promising for future discoveries: $B \to K^{(*)}\tau^+\tau^-$, $B \to K^{(*)}\tau\mu$, $B_s \to \mu e$, $B \to K\mu e$, $\mu \to e\gamma...$
- Data on $b \rightarrow c\tau\nu$ disagree with their SM predictions. Both anomalies hint to the violation of lepton-flavour universality, a cornerstone of the weak interaction. Are there experimental issues with $B \rightarrow D^*\tau\nu$ or τ reconstruction in general?
- Leptoquark models could link $b \rightarrow s\mu^+\mu^-$ to $b \rightarrow c\tau\nu$.

- CP violation in $K \to \pi\pi$ decays disagrees with the SM prediction by 2.8 σ . This deviation can be accomodated in the MSSM without violating lower bounds on the masses of the supersymmetric particles from LHC searches.
- Alternative explanation: U(1)' models with Z'-s-d couplings.
- Both the MSSM and leptoquark models can further explain a_{μ} .
- Promising for future discoveries: $K^+ \to \pi^+ \overline{\nu} \nu$ and $K_{\text{long}} \to \pi^0 \overline{\nu} \nu$ to discriminate between different explanations.
- Z' models may simultaneously explain $b \rightarrow s\mu\mu$ and ϵ'_{K} . Do we see first hints of horizontal gauge dynamics?

Introduction $b \rightarrow s \mu^+ \mu^ b \rightarrow c \tau \nu$ Kaon CP violation

Muon *g* – 2

Summary

Penguins in $b \rightarrow s\mu^+\mu^-$ or $s \rightarrow d\overline{q}q$:

Wake-up call for New Physics?