Dirac Neutrinos and Their Many Surprising Connections

Rahul Srivastava
Astroparticle and High Energy Physics Group
Instituto de Fisica Corpuscular
CSIC-Universitat de Valencia
Valencia, Spain

Planck - 2018

Outline

- Are Majorana Neutrinos Natural?
- 2 Dirac Neutrinos
- Fun With Dirac Neutrinos
- 4 Conclusions

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?

 Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
- Perhaps the most important question is about nature of neutrinos
 i.e. are they Director Majorana particles?

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
 - .
 - .
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
 - .
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
 - .
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
 - .
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
 - .
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
 - .
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
 - :
 - .
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

- Neutrinos are most mysterious and ill understood of all known particles
- Even after 80+ years we know very little about them :
 - Nature of neutrinos: Dirac or Majorana?
 - Number of neutrino species: Sterile Neutrinos?
 - Mass Hierarchy: Normal or Inverted?
 - CP violation: $\delta_{CP} \neq 0$?
 - Octant of θ_{23} mixing angle: $\theta_{23} < 45^{\circ}$ or $\theta_{23} > 45^{\circ}$?
 - Why lepton and quark mixing parameters are so different?
 - :
 - .
- Perhaps the most important question is about nature of neutrinos i.e. are they Dirac or Majorana particles?

- The debate about nature of neutrinos is almost as old as the neutrinos themselves
- ullet Small neutrino mass $m_
 u$ and the V-A nature of the weak interactions
 - ⇒ Discerning the nature of neutrinos from experiments is a formidable task
- V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by a power of m_{ν}
- Still some potentially feasible process:
 - Neutrinoless Double Beta Decay $(0\nu 2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana nature of neutrinos

- The debate about nature of neutrinos is almost as old as the neutrinos themselves
- ullet Small neutrino mass $m_{
 u}$ and the V-A nature of the weak interactions
 - ⇒ Discerning the nature of neutrinos from experiments is a formidable task
- V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by a power of m_{ν}
- Still some potentially feasible process:
 - Neutrinoless Double Beta Decay $(0\nu2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu 2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana nature of neutrinos

- The debate about nature of neutrinos is almost as old as the neutrinos themselves
- ullet Small neutrino mass $m_
 u$ and the V-A nature of the weak interactions
 - ⇒ Discerning the nature of neutrinos from experiments is a formidable task
- V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by a power of m_{ν}
- Still some potentially feasible process:
 - ullet Neutrinoless Double Beta Decay (0
 u2eta)
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana nature of neutrinos

- The debate about nature of neutrinos is almost as old as the neutrinos themselves
- ullet Small neutrino mass $m_
 u$ and the V-A nature of the weak interactions
 - ⇒ Discerning the nature of neutrinos from experiments is a formidable task
- ullet V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by a power of $m_{
 u}$
- Still some potentially feasible process:
 Neutrinoless Double Beta Decay (0v2β)
 LHC signatures of lepton number violation
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana nature of neutrinos

- The debate about nature of neutrinos is almost as old as the neutrinos themselves
- ullet Small neutrino mass $m_
 u$ and the V-A nature of the weak interactions
 - ⇒ Discerning the nature of neutrinos from experiments is a formidable task
- V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by a power of m_{ν}
- Still some potentially feasible process:
 - Neutrinoless Double Beta Decay $(0\nu2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana nature of neutrinos

- The debate about nature of neutrinos is almost as old as the neutrinos themselves
- ullet Small neutrino mass $m_
 u$ and the V-A nature of the weak interactions
 - ⇒ Discerning the nature of neutrinos from experiments is a formidable task
- V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by a power of m_{ν}
- Still some potentially feasible process:
 - Neutrinoless Double Beta Decay $(0\nu2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana nature of neutrinos

- The debate about nature of neutrinos is almost as old as the neutrinos themselves
- ullet Small neutrino mass $m_
 u$ and the V-A nature of the weak interactions
 - ⇒ Discerning the nature of neutrinos from experiments is a formidable task
- V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by a power of m_{ν}
- Still some potentially feasible process:
 - Neutrinoless Double Beta Decay $(0\nu2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana nature of neutrinos

- The debate about nature of neutrinos is almost as old as the neutrinos themselves
- ullet Small neutrino mass $m_
 u$ and the V-A nature of the weak interactions
 - ⇒ Discerning the nature of neutrinos from experiments is a formidable task
- V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by a power of m_{ν}
- Still some potentially feasible process:
 - Neutrinoless Double Beta Decay $(0\nu2\beta)$
 - LHC signatures of lepton number violation
 - ullet KATRIN measures $m_
 u$ + no 0
 u 2eta
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana nature of neutrinos

- The debate about nature of neutrinos is almost as old as the neutrinos themselves
- ullet Small neutrino mass $m_
 u$ and the V-A nature of the weak interactions
 - ⇒ Discerning the nature of neutrinos from experiments is a formidable task
- V-A nature of Standard Model: All observables sensitive to nature of neutrinos suppressed by a power of m_{ν}
- Still some potentially feasible process:
 - Neutrinoless Double Beta Decay $(0\nu2\beta)$
 - LHC signatures of lepton number violation
 - KATRIN measures m_{ν} + no $0\nu2\beta$
- Current Status: No experimental or observational evidence/hint in favor of either Dirac or Majorana nature of neutrinos

- ullet No experimental signature/hint \Rightarrow Dirac and Majorana neutrinos equally likely
 - Expectation: Neutrino Models for Dirac and Majorana neutrinos considered almost equally in literature
 - Reality: Theorist predominantly consider/assume/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - In my knowledge, with possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- ullet No experimental signature/hint \Rightarrow Dirac and Majorana neutrinos equally likely
 - Expectation: Neutrino Models for Dirac and Majorana neutrinos considered almost equally in literature
 - Reality: Theorist predominantly consider/assume/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - In my knowledge, with possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- ullet No experimental signature/hint \Rightarrow Dirac and Majorana neutrinos equally likely
 - Expectation: Neutrino Models for Dirac and Majorana neutrinos considered almost equally in literature
 - Reality: Theorist predominantly consider/assume/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - In my knowledge, with possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- ullet No experimental signature/hint \Rightarrow Dirac and Majorana neutrinos equally likely
 - Expectation: Neutrino Models for Dirac and Majorana neutrinos considered almost equally in literature
 - Reality: Theorist predominantly consider/assume/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - In my knowledge, with possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- ullet No experimental signature/hint \Rightarrow Dirac and Majorana neutrinos equally likely
 - Expectation: Neutrino Models for Dirac and Majorana neutrinos considered almost equally in literature
 - Reality: Theorist predominantly consider/assume/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - In my knowledge, with possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- ullet No experimental signature/hint \Rightarrow Dirac and Majorana neutrinos equally likely
 - Expectation: Neutrino Models for Dirac and Majorana neutrinos considered almost equally in literature
 - Reality: Theorist predominantly consider/assume/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - In my knowledge, with possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- ullet No experimental signature/hint \Rightarrow Dirac and Majorana neutrinos equally likely
 - Expectation: Neutrino Models for Dirac and Majorana neutrinos considered almost equally in literature
 - Reality: Theorist predominantly consider/assume/believe neutrinos are Majorana in nature
 - Even books and reviews on neutrinos either never discuss or barely consider Dirac neutrinos, often as a passing afterthought
 - In my knowledge, with possible exception of "String Theory", no under paradigm has such an universal acceptance without any shred of experimental evidence
- This begs the question: Why Majorana neutrinos are the favorite child of theorists?
- Is there any really compelling theoretical reason for such an overwhelming preference for Majorana neutrinos?

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
- Spacetime symmetry: Not the only symmetry conserved in nature
- Otherwise all fermions should be Majorana and all scalars should be real scalars

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
- Spacetime symmetry: Not the only symmetry conserved in nature
- Otherwise all fermions should be Majorana and all scalars should be real scalars

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
- Spacetime symmetry: Not the only symmetry conserved in nature
- Otherwise all fermions should be Majorana and all scalars should be real scalars

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
- Spacetime symmetry: Not the only symmetry conserved in nature
- Otherwise all fermions should be Majorana and all scalars should be real scalars

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
- Spacetime symmetry: Not the only symmetry conserved in nature
- Otherwise all fermions should be Majorana and all scalars should be real scalars

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
- Spacetime symmetry: Not the only symmetry conserved in nature
- Otherwise all fermions should be Majorana and all scalars should be real scalars

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
- Spacetime symmetry: Not the only symmetry conserved in nature
- Otherwise all fermions should be Majorana and all scalars should be real scalars

- Majorana neutrinos more natural: In what sense?
- Current understanding: Under Poincaré group
 - Majorana fermions: Two-component fundamental irreducible spinorial representations
 - Dirac fermions: Four component reducible spinorial representations
 - From Poincaré symmetry point of view: Majorana fermions are more fundamental
 - Dirac fermions: Can be thought of as two Majorana fermions degenerate in mass
- Spacetime symmetry: Not the only symmetry conserved in nature
- Otherwise all fermions should be Majorana and all scalars should be real scalars

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism $U(1)_{EM}$ and Color Symmetries $SU(3)_C$ also seems to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry, Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism U(1)_{EM} and Color Symmetries SU(3)_C also seems to be conserved
 - ullet Majorana mass term: Violates both $U(1)_{\it EM}$ and $SU(3)_{\it C}$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - ullet $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Lepton number conservation: Dirac neutrinos
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry, Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism $U(1)_{EM}$ and Color Symmetries $SU(3)_C$ also seems to be conserved
 - ullet Majorana mass term: Violates both $U(1)_{\it EM}$ and $SU(3)_{\it C}$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - ullet $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry,
 Dirac/Majorana nature depends on the U(1), breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism $U(1)_{EM}$ and Color Symmetries $SU(3)_C$ also seems to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number U(1)_L and Baryon number
 U(1)_R are accidentally conserved in SM
 - ullet $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry,
 Dirac/Majorana nature depends on the U(1)_L breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism $U(1)_{EM}$ and Color Symmetries $SU(3)_C$ also seems to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - U(1)_L and U(1)_B conservation has important consequences
 Baryon number conservation: Proton stability
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry, Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism U(1)_{EM} and Color Symmetries SU(3)_C also seems to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - U(1)_L and U(1)_B conservation has important consequences
 Baryon number conservation: Proton stability
 Lepton number conservation: Dirac neutrinos
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry, Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism $U(1)_{EM}$ and Color Symmetries $SU(3)_C$ also seems to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry, Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism U(1)_{EM} and Color Symmetries SU(3)_C also seems to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry, Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism U(1)_{EM} and Color Symmetries SU(3)_C also seems to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_C$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry, Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism U(1)_{EM} and Color Symmetries SU(3)_C also seems to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_{C}$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry, Dirac/Majorana nature depends on the $U(1)_L$ breaking pattern

- Additional internal symmetries seem to be conserved too
 - In Standard Model both Electromagnetism U(1)_{EM} and Color Symmetries SU(3)_C also seems to be conserved
 - Majorana mass term: Violates both $U(1)_{EM}$ and $SU(3)_{C}$
 - Conserved Internal Symmetries: Charged leptons and quarks are forced to be Dirac particles
- Dirac/Majorana nature: Only charges under completely conserved symmetries matter
 - Accidental Symmetries: Lepton number $U(1)_L$ and Baryon number $U(1)_B$ are accidentally conserved in SM
 - $U(1)_L$ and $U(1)_B$ conservation has important consequences
 - Baryon number conservation: Proton stability
 - Lepton number conservation: Dirac neutrinos
 - Accidental Symmetry of SM: New physics beyond SM need not conserve them
 - In absence of any other hitherto unknown conserved symmetry, Dirac/Majorana nature depends on the U(1)_L breaking pattern

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 Very little attempt has been made to develop bigger picture with
- Dirac neutrinos are plain boring
 I will try to address this issue a bit :)

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - ullet Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - ullet Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

- Majorana neutrinos: Elegant mass generation mechanisms e.g. seesaws, radiative mechanisms
 - ullet Dirac Neutrinos: Tiny Yukawa coupling of $\mathcal{O}(10^{-12})$ or less is needed
 - Not True: See Salvador's and Eduardo's talks
- Majorana neutrinos more economical in some sense
 - A given model can be more economical than other
 - Certainly not all Majorana neutrino mass models are more economical than any and all Dirac neutrino mass models
 - Economy can justify bias for a given model but certainly not the bias about Majorana neutrino paradigm
- Majorana neutrinos fit nicely in a bigger picture
 - Very little attempt has been made to develop bigger picture with Dirac neutrinos
- Dirac neutrinos are plain boring
 - I will try to address this issue a bit :)

Outline

- Are Majorana Neutrinos Natural?
- 2 Dirac Neutrinos
- Fun With Dirac Neutrinos
- 4 Conclusions

- For neutrinos to be Dirac particle:
- If $U(1)_L$ is conserved: Neutrinos are Dirac
- The Lepton number symmetry breaking pattern under new physics
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m

 $U(1)_{R-I}$. For simplicity here I discuss only $U(1)_I$, though this argument remains valid for $U(\square)_{R-I}$ $\land \square$ $\land \square$

- For neutrinos to be Dirac particle:
 - ullet Right handed neutrinos (u_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - ullet Preferable: A mass mechanism to naturally explain smallness of $m_
 u$
- If $U(1)_L$ is conserved: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- The Lepton number symmetry¹ breaking pattern under new physics will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega=\mathrm{e}^{\frac{2\pi i}{m}}-1$

Rahul Srivastava

- For neutrinos to be Dirac particle:
 - ullet Right handed neutrinos (u_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
- If $U(1)_L$ is conserved: Neutrinos are Dirac
- The Lepton number symmetry breaking pattern under new physics
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m

 $U(1)_{R-I}$. For simplicity here I discuss only $U(1)_I$, though this argument remains valid for $U(0)_{R-I}$ \bullet \bullet \bullet \bullet \bullet

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - Preferable: A mass mechanism to naturally explain smallness of m_{ν}
- If $U(1)_L$ is conserved: Neutrinos are Dirac
- The Lepton number symmetry breaking pattern under new physics
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m

 $U(1)_{R-I}$. For simplicity here I discuss only $U(1)_I$, though this argument remains valid for $U(0)_{R-I}$ \bullet \bullet \bullet \bullet \bullet

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - ullet Preferable: A mass mechanism to naturally explain smallness of $m_
 u$
- If $U(1)_L$ is conserved: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- The Lepton number symmetry¹ breaking pattern under new physics will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible
 - ullet Conveniently represented by using the n-th roots of unity, $\omega=e^{rac{2\pi i}{m}}$

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - ullet Preferable: A mass mechanism to naturally explain smallness of $m_
 u$
- If $U(1)_L$ is conserved: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- The Lepton number symmetry¹ breaking pattern under new physics will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible
 - ullet Conveniently represented by using the n-th roots of unity, $\omega=e^{rac{2\pi I}{m}}$

While $U(1)_B$ and $U(1)_L$ both are separately anomalous at the quantum level, there are anomaly free combinations, such as $U(1)_{B-L}$. For simplicity here I discuss only $U(1)_L$, though this argument remains valid for $U(0)_{B-L}$ of $B \to A \to A \to A$.

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - ullet Preferable: A mass mechanism to naturally explain smallness of $m_
 u$
- If $U(1)_L$ is conserved: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- The Lepton number symmetry¹ breaking pattern under new physics will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible
 - Conveniently represented by using the n-th roots of unity. $\omega = e^{\frac{2\pi I}{m}}$

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - ullet Preferable: A mass mechanism to naturally explain smallness of $m_
 u$
- If $U(1)_L$ is conserved: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- The Lepton number symmetry¹ breaking pattern under new physics will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The ∠_m groups only admit one-dimensional irreducible representations
 - ullet Conveniently represented by using the n-th roots of unity, $\omega=\mathrm{e}^{rac{2\pi I}{m}}$,

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - ullet Preferable: A mass mechanism to naturally explain smallness of $m_
 u$
- If $U(1)_L$ is conserved: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- The Lepton number symmetry¹ breaking pattern under new physics will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The \angle_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega = e^{\frac{2\pi I}{m}}$, where $\omega^m = 1$

While $U(1)_B$ and $U(1)_L$ both are separately anomalous at the quantum level, there are anomaly free combinations, such as $U(1)_{B-L}$. For simplicity here I discuss only $U(1)_L$, though this argument remains valid for $U(1)_{B-L}$ \bigcirc

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - ullet Preferable: A mass mechanism to naturally explain smallness of $m_
 u$
- If $U(1)_L$ is conserved: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- The Lepton number symmetry¹ breaking pattern under new physics will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega=e^{\frac{2\pi I}{m}}$,

While $U(1)_B$ and $U(1)_L$ both are separately anomalous at the quantum level, there are anomaly free combinations, such as $U(1)_{B-L}$. For simplicity here I discuss only $U(1)_L$, though this argument remains valid for $U(1)_{B-L}$ \bigcirc

- For neutrinos to be Dirac particle:
 - Right handed neutrinos (ν_R) should be added to Standard Model
 - A conserved symmetry is required to protect "Diracness" of neutrinos
 - ullet Preferable: A mass mechanism to naturally explain smallness of $m_{
 u}$
- If $U(1)_L$ is conserved: Neutrinos are Dirac
 - Accidental Symmetry of SM: New physics beyond SM need not conserve it
- The Lepton number symmetry breaking pattern under new physics will determine the nature of neutrinos
- U(1) symmetry only admits Z_m subgroups i.e. cyclic group of m elements
 - If x is a non-identity group element of Z_m , then $x^{m+1} \equiv x$
 - The Z_m groups only admit one-dimensional irreducible representations
 - Conveniently represented by using the n-th roots of unity, $\omega = e^{\frac{2\pi I}{m}}$. where $\omega^m = 1$

 $^{^{1}}$ While $U(1)_{B}$ and $U(1)_{I}$ both are separately anomalous at the quantum level, there are anomaly free combinations, such as $U(1)_{B-I}$. For simplicity here I discuss only $U(1)_I$, though this argument remains valid for $U(1)_{B-I}$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc

Symmetry Breaking $U(1)_L \to Z_m$

 $\bullet~U(1)_L \to Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}

$$U(1)_L \quad o \quad Z_m \equiv Z_{2n+1}$$
 where $n \geq 1$ is a positive integer

⇒ Neutrinos are Dirac particles

$$U(1)_L \quad o \quad Z_m \equiv Z_{2n}$$
 where $n \geq 1$ is a positive integer

 \Rightarrow Neutrinos can be Dirac or Majorana

• If the $U(1)_L$ is broken to a Z_{2n} subgroup, then one can make a further broad classification

$$u \sim \omega''$$
 under $Z_{2n} \Rightarrow {\sf Majorana}$ neutrinos $u \sim \omega''$ under $Z_{2n} \Rightarrow {\sf Dirac}$ neutrinos

• Thus, from a symmetry point of view, Majorana neutrinos are the special ones, emerging only for certain transformation properties under the unbroken residual Z_{2n} symmetry

Symmetry Breaking $U(1)_L \to Z_m$

• $U(1)_L o Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}

$$U(1)_L \quad o \quad Z_m \equiv Z_{2n+1} \ {\sf where} \ n \geq 1 \ {\sf is a positive integer}$$

$$U(1)_L \rightarrow Z_m \equiv Z_{2n}$$
 where $n \geq 1$ is a positive integer

• If the $U(1)_L$ is broken to a Z_{2n} subgroup, then one can make a further broad classification

$$u \sim \omega^n$$
 under $Z_{2n} \Rightarrow {\sf Majorana}$ neutrinos $u \ll \omega^n$ under $Z_{2n} \Rightarrow {\sf Dirac}$ neutrinos

• Thus, from a symmetry point of view, Majorana neutrinos are the special ones, emerging only for certain transformation properties under the unbroken residual Z_{2n} symmetry

Symmetry Breaking $U(1)_L \to Z_m$

• $U(1)_L o Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}

$$U(1)_L \rightarrow Z_m \equiv Z_{2n+1}$$
 where $n \geq 1$ is a positive integer

⇒ Neutrinos are Dirac particles

$$U(1)_L \quad o \quad Z_m \equiv Z_{2n} \, \text{where} \, n \geq 1 \, \text{ is a positive integer}$$

⇒ Neutrinos can be Dirac or Majorana

• If the $U(1)_L$ is broken to a Z_{2n} subgroup, then one can make a further broad classification

$$u \sim \omega^n \text{ under } Z_{2n} \Rightarrow \text{Majorana neutrinos}$$
 $u \sim \omega^n \text{ under } Z_{2n} \Rightarrow \text{Dirac neutrinos}$

• Thus, from a symmetry point of view, Majorana neutrinos are the special ones, emerging only for certain transformation properties under the unbroken residual Z_{2n} symmetry

Symmetry Breaking $U(1)_L \to Z_m$

• $U(1)_L o Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}

$$U(1)_L$$
 o $Z_m \equiv Z_{2n+1}$ where $n \geq 1$ is a positive integer \Rightarrow Neutrinos are Dirac particles $U(1)_L$ o $Z_m \equiv Z_{2n}$ where $n \geq 1$ is a positive integer \Rightarrow Neutrinos can be Dirac or Majorana

- If the $U(1)_L$ is broken to a Z_{2n} subgroup, then one can make a further broad classification
 - $u \sim \omega^n \text{ under } Z_{2n} \Rightarrow \text{Majorana neutrinos}$ $u \sim \omega^n \text{ under } Z_{2n} \Rightarrow \text{Dirac neutrinos}$
- Thus, from a symmetry point of view, Majorana neutrinos are the special ones, emerging only for certain transformation properties under the unbroken residual Z_{2n} symmetry

Symmetry Breaking $U(1)_L \to Z_m$

• $U(1)_L o Z_m$ with neutrinos transforming non-trivially under the residual Z_m^{-2}

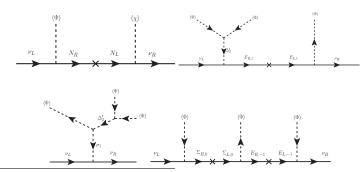
$$U(1)_L
ightharpoonup Z_m \equiv Z_{2n+1}$$
 where $n \geq 1$ is a positive integer \Rightarrow Neutrinos are Dirac particles $U(1)_L
ightharpoonup Z_m \equiv Z_{2n}$ where $n \geq 1$ is a positive integer \Rightarrow Neutrinos can be Dirac or Majorana

• If the $U(1)_L$ is broken to a Z_{2n} subgroup, then one can make a further broad classification

$$u \sim \omega^n \text{ under } Z_{2n} \Rightarrow \text{Majorana neutrinos}$$
 $u \sim \omega^n \text{ under } Z_{2n} \Rightarrow \text{Dirac neutrinos}$

• Thus, from a symmetry point of view, Majorana neutrinos are the special ones, emerging only for certain transformation properties under the unbroken residual Z_{2n} symmetry

 $^{^2}$ M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018) 302-305, arXiv:1711.06181 $^{\circ}$ $^$


Dirac Neutrinos: Mass Mechanisms

- Dirac neutrino mass models are gaining attention in last one-two years
- Several Seesaw and loop mechanisms have been developed³

³E.Ma, RS: 1411.5042; S.C.Chuliá, E.Ma, RS, J.W.F.Valle: 1606.04543; S.C.Chuliá, RS, J.W.F.Valle: 1606.06904,1706.00210
C.Bonilla, E.Ma, E.Peinado, J.W.F.Valle: 1607.03931; E.Ma, O.Popov: 1609.02538; W.Wang, Z.L.Han: 1611.03240,1805.02025;
C.Y.Yao, G.J.Ding: 1707.09786,1802.05231; C.Bonilla, J.M.Lamprea, E.Peinado, J.W.F.Valle: 1710.06498; D.Borah, B.Karmakar:
1712.06407; S.C.Chuliá, RS, J.W.F.Valle: 1802.05722,1804.03181; M.Reig, D.Restrepo, J.W.#-Exalle: 1805.08528 ▼ ▶ 4 ▼ ▶

Dirac Neutrinos: Mass Mechanisms

- Dirac neutrino mass models are gaining attention in last one-two years
- Several Seesaw and loop mechanisms have been developed³

³E.Ma, RS: 1411.5042; S.C.Chuliá, E.Ma, RS, J.W.F.Valle: 1606.04543; S.C.Chuliá, RS, J.W.F.Valle: 1606.06904,1706.00210; C.Bonilla, E.Ma, E.Peinado, J.W.F.Valle: 1607.03931; E.Ma, O.Popov: 1609.02538; W.Wang, Z.L.Han: 1611.03240,1805.02025; C.Y.Yao, G.J.Ding: 1707.09786,1802.05231; C.Bonilla, J.M.Lamprea, E.Peinado, J.W.F.Valle: 1710.06498; D.Borah, B.Karmakar: 1712.06407; S.C.Chuliá, RS, J.W.F.Valle: 1802.05722,1804.03181; M.Reig, D.Restrepo, J.W.F.Valle: 1803.08528

Outline

- Are Majorana Neutrinos Natural?
- 2 Dirac Neutrinos
- Fun With Dirac Neutrinos
- 4 Conclusions

- Symmetry ensuring Dirac nature of neutrinos can also provide stability to the dark matter particle
 - Links Diracness and dark matter stability intimately
 - Works irrespective of the details of the particular mass model, and of the nature of their UV-completion ⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Such quarticity symmetry in context of Dirac neutrinos may arise as a residual subgroup of $U(1)_l$ or $U(1)_{B-l}$
 - Under the quarticity symmetry the lepton doublets L and right handed neutrinos ν_R transform as ω; ω⁴ = 1
 - Since the quarticity symmetry is preserved, no scalar fields which obtain a non-zero expectation value should be charged under Z₄.
 - Thus we have

If
$$\langle X_i
angle \;
eq 0$$
, then $X_i \sim 1$ under Z_4 If $\zeta_i \;
eq 0$ under Z_4 , then $\langle \zeta_i
angle = 0$

- Symmetry ensuring Dirac nature of neutrinos can also provide stability to the dark matter particle
 - Links Diracness and dark matter stability intimately
 - Works irrespective of the details of the particular mass model, and of the nature of their UV-completion
- For illustration take Z_4 lepton quarticity symmetry
 - Such quarticity symmetry in context of Dirac neutrinos may arise as a residual subgroup of $U(1)_l$ or $U(1)_{B-l}$
 - Under the quarticity symmetry the lepton doublets L and right handed neutrinos ν_R transform as ω; ω⁴ = 1
 - Since the quarticity symmetry is preserved, no scalar fields which obtain a non-zero expectation value should be charged under Z₄.
 - I hus we have

If
$$\langle X_i
angle \;
eq 0$$
, then $X_i \sim 1$ under Z_4 If $\zeta_i \; \sim \; 1$ under Z_4 , then $\langle \zeta_i
angle = 0$

- Symmetry ensuring Dirac nature of neutrinos can also provide stability to the dark matter particle
 - Links Diracness and dark matter stability intimately
 - Works irrespective of the details of the particular mass model, and of the nature of their UV-completion
- For illustration take Z_4 lepton quarticity symmetry
 - Such quarticity symmetry in context of Dirac neutrinos may arise as a residual subgroup of $U(1)_{\ell}$ or $U(1)_{R-\ell}$
 - Under the quarticity symmetry the lepton doublets L and right handed neutrinos we transform as $av_1 a_1^4 = 1$
 - Since the quarticity symmetry is preserved, no scalar fields which obtain a non-zero expectation value should be charged under Z₄.
 - I hus we have:
 - If $\langle X_i \rangle \neq 0$, then $X_i \sim 1$ under Z_4
 - If $\zeta_i ~ \sim ~ 1$ under Z_4 , then $\langle \zeta_i
 angle = ~ 0$.

where X_i , ζ_i ; $i=1,\cdots n$ denote the scalar fields.

- Symmetry ensuring Dirac nature of neutrinos can also provide stability to the dark matter particle
 - Links Diracness and dark matter stability intimately
 - Works irrespective of the details of the particular mass model, and of the nature of their UV-completion ⁴
- \bullet For illustration take Z_4 lepton quarticity symmetry
 - Such quarticity symmetry in context of Dirac neutrinos may arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry the lepton doublets L and right handed neutrinos ν_R transform as ω ; $\omega^4 = 1$
 - Since the quarticity symmetry is preserved, no scalar fields which obtain a non-zero expectation value should be charged under Z₄.
 - Thus we have:

If
$$\langle X_i \rangle \neq 0$$
, then $X_i \sim 1$ under Z_4
If $\zeta_i \sim 1$ under Z_4 , then $\langle \zeta_i \rangle = 0$

- Symmetry ensuring Dirac nature of neutrinos can also provide stability to the dark matter particle
 - Links Diracness and dark matter stability intimately
 - Works irrespective of the details of the particular mass model, and of the nature of their UV-completion ⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Such quarticity symmetry in context of Dirac neutrinos may arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry the lepton doublets L and right handed neutrinos ν_R transform as ω ; $\omega^4 = 1$
 - Since the quarticity symmetry is preserved, no scalar fields which obtain a non-zero expectation value should be charged under Z₄.
 - Thus we have

If
$$\langle X_i \rangle \neq 0$$
, then $X_i \sim 1$ under Z_4
If $\zeta_i \sim 1$ under Z_4 , then $\langle \zeta_i \rangle = 0$.

- Symmetry ensuring Dirac nature of neutrinos can also provide stability to the dark matter particle
 - Links Diracness and dark matter stability intimately
 - Works irrespective of the details of the particular mass model, and of the nature of their UV-completion ⁴
- \bullet For illustration take Z_4 lepton quarticity symmetry
 - Such quarticity symmetry in context of Dirac neutrinos may arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry the lepton doublets L and right handed neutrinos ν_R transform as ω; ω⁴ = 1
 - Since the quarticity symmetry is preserved, no scalar fields which obtain a non-zero expectation value should be charged under Z₄.
 - Thus we have:

If
$$\langle X_i \rangle \neq 0$$
, then $X_i \sim 1$ under Z_4
If $\zeta_i \sim 1$ under Z_4 , then $\langle \zeta_i \rangle = 0$

- Symmetry ensuring Dirac nature of neutrinos can also provide stability to the dark matter particle
 - Links Diracness and dark matter stability intimately
 - Works irrespective of the details of the particular mass model, and of the nature of their UV-completion ⁴
- \bullet For illustration take Z_4 lepton quarticity symmetry
 - Such quarticity symmetry in context of Dirac neutrinos may arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry the lepton doublets L and right handed neutrinos ν_R transform as ω ; $\omega^4=1$
 - Since the quarticity symmetry is preserved, no scalar fields which obtain a non-zero expectation value should be charged under Z₄.
 - Thus we have:

If
$$\langle X_i \rangle \neq 0$$
, then $X_i \sim 1$ under Z_4
If $\zeta_i \sim 1$ under Z_4 , then $\langle \zeta_i \rangle = 0$

- Symmetry ensuring Dirac nature of neutrinos can also provide stability to the dark matter particle
 - Links Diracness and dark matter stability intimately
 - Works irrespective of the details of the particular mass model, and of the nature of their UV-completion ⁴
- For illustration take Z_4 lepton quarticity symmetry
 - Such quarticity symmetry in context of Dirac neutrinos may arise as a residual subgroup of $U(1)_L$ or $U(1)_{B-L}$
 - Under the quarticity symmetry the lepton doublets L and right handed neutrinos ν_R transform as ω; ω⁴ = 1
 - Since the quarticity symmetry is preserved, no scalar fields which obtain a non-zero expectation value should be charged under Z₄.
 - Thus we have:

If
$$\langle X_i \rangle \neq 0$$
, then $X_i \sim 1$ under Z_4
If $\zeta_i \sim 1$ under Z_4 , then $\langle \zeta_i \rangle = 0$.

- The above constraints have a profound effect in a completely unexpected direction
- Consider for example, the "generalized Weinberg operator" for Dirac neutrinos $\frac{1}{\Lambda} \bar{L} \otimes X \otimes Y \otimes \nu_R$
- The scalar fields $X, Y \sim 1$ under Z_4 to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4 , hence carrying no vev i.e. $\langle \zeta \rangle = 0$.
- Its interactions with the other fields are severely restricted by Z_4 .
- Notice that the Yukawa coupling of ζ with any fermion, as well as the cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_i\zeta$, which would lead to its decay, are all forbidden by the Z_4 .
- Good candidate for stable dark matter

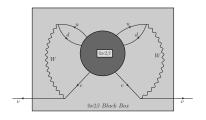
- The above constraints have a profound effect in a completely unexpected direction
- Consider for example, the "generalized Weinberg operator" for Dirac neutrinos $\frac{1}{\Lambda} \, \bar{L} \otimes X \otimes Y \otimes \nu_R$
- The scalar fields $X, Y \sim 1$ under Z_4 to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4 , hence carrying no vev i.e. $\langle \zeta \rangle = 0$.
- Its interactions with the other fields are severely restricted by Z_4 .
- Notice that the Yukawa coupling of ζ with any fermion, as well as the cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_i\zeta$, which would lead to its decay, are all forbidden by the Z_4 .
- Good candidate for stable dark matter

- The above constraints have a profound effect in a completely unexpected direction
- Consider for example, the "generalized Weinberg operator" for Dirac neutrinos $\frac{1}{\Lambda} \bar{L} \otimes X \otimes Y \otimes \nu_R$
- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4 , hence carrying no vev i.e. $\langle \zeta \rangle = 0$.
- Its interactions with the other fields are severely restricted by Z_4 .
- Notice that the Yukawa coupling of ζ with any fermion, as well as the cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_i\zeta$, which would lead to its decay, are all forbidden by the Z_4 .
- Good candidate for stable dark matter

- The above constraints have a profound effect in a completely unexpected direction
- Consider for example, the "generalized Weinberg operator" for Dirac neutrinos $\frac{1}{\Lambda} \bar{L} \otimes X \otimes Y \otimes \nu_R$
- The scalar fields $X, Y \sim 1$ under Z_4 to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4 , hence carrying no vev i.e. $\langle \zeta \rangle = 0$.
- Its interactions with the other fields are severely restricted by Z_4 .
- Notice that the Yukawa coupling of ζ with any fermion, as well as the cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_i\zeta$, which would lead to its decay, are all forbidden by the Z_4 .
- Good candidate for stable dark matter

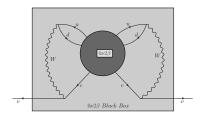
- The above constraints have a profound effect in a completely unexpected direction
- Consider for example, the "generalized Weinberg operator" for Dirac neutrinos $\frac{1}{\Lambda} \, \bar{L} \otimes X \otimes Y \otimes \nu_R$
- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4 , hence carrying no vev i.e. $\langle \zeta \rangle = 0$.
- Its interactions with the other fields are severely restricted by Z_4 .
- Notice that the Yukawa coupling of ζ with any fermion, as well as the cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_i\zeta$, which would lead to its decay, are all forbidden by the Z_4 .
- Good candidate for stable dark matter

- The above constraints have a profound effect in a completely unexpected direction
- Consider for example, the "generalized Weinberg operator" for Dirac neutrinos $\frac{1}{\Lambda} \, \bar{L} \otimes X \otimes Y \otimes \nu_R$
- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4 , hence carrying no vev i.e. $\langle \zeta \rangle = 0$.
- Its interactions with the other fields are severely restricted by Z_4 .
- Notice that the Yukawa coupling of ζ with any fermion, as well as the cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_i\zeta$, which would lead to its decay, are all forbidden by the Z_4 .
- Good candidate for stable dark matter


- The above constraints have a profound effect in a completely unexpected direction
- Consider for example, the "generalized Weinberg operator" for Dirac neutrinos $\frac{1}{\Lambda} \, \bar{L} \otimes X \otimes Y \otimes \nu_R$
- The scalar fields X, Y ~ 1 under Z₄ to preserve the Diracness of neutrinos.
- Consider now another scalar field ζ , singlet under SM gauge symmetry, but transforming as $\zeta \sim \omega$ under the Z_4 , hence carrying no vev i.e. $\langle \zeta \rangle = 0$.
- Its interactions with the other fields are severely restricted by Z_4 .
- Notice that the Yukawa coupling of ζ with any fermion, as well as the cubic couplings with the scalars X_i , i.e. $X_i^{\dagger}X_i\zeta$, which would lead to its decay, are all forbidden by the Z_4 .
- Good candidate for stable dark matter

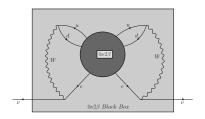
- ullet If $U(1)_L$ is completely broken or broken to Z_{2n} with $u\sim\omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - ullet In particular if $U(1)_L o Z_4$: Quadruple Beta Decay $^\circ$

- If $U(1)_L$ is completely broken or broken to Z_{2n} with $\nu \sim \omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - ullet In particular if $U(1)_L o Z_4$: Quadruple Beta Decay ullet


- If $U(1)_L$ is completely broken or broken to Z_{2n} with $\nu \sim \omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - ullet In particular if $U(1)_L o Z_4$: Quadruple Beta Decay

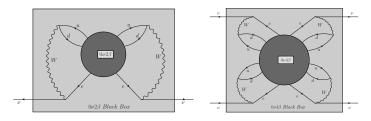
 $^{^{5}}$ J.Schechter, J.W.F.Valle, Phys.Rev. D25 (1982) 2951

Xiv:1306.0580; M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018


- If $U(1)_L$ is completely broken or broken to Z_{2n} with $u\sim\omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - ullet In particular if $U(1)_L o Z_4\colon$ Quadruple Beta Decay 6

⁵ J.Schechter, J.W.F.Valle, Phys.Rev. D25 (1982) 2951

[~]J.Heeck, W.Rodejohann, EPL 103 (2013) no.3, 32001,arXiv:1306.0580; M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018

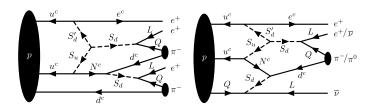

- If $U(1)_L$ is completely broken or broken to Z_{2n} with $\nu \sim \omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - In particular if $U(1)_L o Z_4$: Quadruple Beta Decay ⁶

⁵ J.Schechter, J.W.F.Valle, Phys.Rev. D25 (1982) 2951

[&]quot;J.Heeck, W.Rodejohann, EPL 103 (2013) no.3, 32001,arXiv:1306.0580; M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018

- If $U(1)_L$ is completely broken or broken to Z_{2n} with $\nu \sim \omega^n$
 - Majorana neutrinos
 - Neutrinoless Double Beta Decay⁵
- If $U(1)_L$ is broken in any other way
 - Dirac Neutrinos
 - ullet In particular if $U(1)_L o Z_4$: Quadruple Beta Decay 6

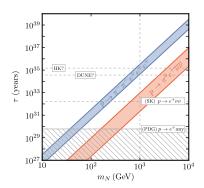
⁵ J.Schechter, J.W.F.Valle, Phys.Rev. D25 (1982) 2951


⁶ J.Heeck, W.Rodejohann, EPL 103 (2013) no.3, 32001,arXiv:1306.0580; M.Hirsch, RS, J.W.F.Valle, Phys.Lett. B, 781 (2018)

- \bullet Normal Proton Decay: $P \to \pi^0 I^+$ or $P \to K^+ \bar{\nu}$
 - It is a $\Delta B = \Delta L = 1$ process
- If neutrinos are Dirac with $U(1)_L o Z_3$ breaking then only $\Delta L = 3$ processes are allowed
- This means Proton can only decay in $\Delta B=1, \Delta L=3$ modes such as $P\to e^+e^+\pi^-\pi^-$ or $P\to e^+e^+\pi^-\pi^0\nu$ modes⁷

- Normal Proton Decay: $P \to \pi^0 I^+$ or $P \to K^+ \bar{\nu}$
 - It is a $\Delta B = \Delta L = 1$ process
- If neutrinos are Dirac with $U(1)_L \to Z_3$ breaking then only $\Delta L = 3$
- This means Proton can only decay in $\Delta B = 1$, $\Delta L = 3$ modes such

- Normal Proton Decay: $P \to \pi^0 I^+$ or $P \to K^+ \bar{\nu}$ • It is a $\Delta B = \Delta L = 1$ process
- If neutrinos are Dirac with $U(1)_L \to Z_3$ breaking then only $\Delta L = 3$ processes are allowed
- This means Proton can only decay in $\Delta B = 1$, $\Delta L = 3$ modes such


- \bullet Normal Proton Decay: $P \to \pi^0 I^+$ or $P \to K^+ \bar{\nu}$
 - It is a $\Delta B = \Delta L = 1$ process
- If neutrinos are Dirac with $U(1)_L o Z_3$ breaking then only $\Delta L = 3$ processes are allowed
- This means Proton can only decay in $\Delta B=1, \Delta L=3$ modes such as $P\to e^+e^+e^+\pi^-\pi^-$ or $P\to e^+e^+\pi^-\pi^0\nu$ modes⁷

⁷ R.M.Fonseca, M.Hirsch, RS, Phys.Rev. D97 (2018) no.7, 075026, arXiv:1802.04814 🔻 🗆 🕨 🔻 🗇 🔻 🗦 🔻 📜 💉 💆 🗸

- Such $\Delta B = 1, \Delta L = 3$ modes are induced by dim-10 or higher dimensional operators
- Owing to such high dimensionality of operators, the particles inducing Proton decay can be light and well within LHC range

- Such $\Delta B = 1, \Delta L = 3$ modes are induced by dim-10 or higher dimensional operators
- Owing to such high dimensionality of operators, the particles inducing Proton decay can be light and well within LHC range

Outline

- Are Majorana Neutrinos Natural?
- 2 Dirac Neutrinos
- 3 Fun With Dirac Neutrinos
- 4 Conclusions

There is still a lot to learn about neutrinos

- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However I think there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However I think there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards
 Majorana neutrino paradigm
- However I think there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However I think there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards
 Majorana neutrino paradigm
- However I think there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However I think there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

- There is still a lot to learn about neutrinos
- Perhaps the most important question is nature of neutrinos: Dirac or Majorana
- So far experiments have been unable to infer nature of neutrinos
- For a long time theoretical investigations have been biased towards Majorana neutrino paradigm
- However I think there is no compelling reason for us to discard the possibility of Dirac neutrinos
- With Dirac neutrinos various new and interesting possibilities can arise
- It is high time we pay more attention to possibilities involving Dirac neutrinos

Thank You