Neutrino masses from Planck-scale lepton number breaking

Takashi Toma Technical University of Munich

21st International Conference From the Planck Scale to the Electroweak Scale (Planck 2018) Bonn, Germany

Based on arXiv:1802.09997, and a paper in preparation In collaboration with Alejandro Ibarra and Patrick Strobl

Introduction

Neutrinos are massive. (massless in the Standard Model)

Neutrino oscillation data

Esteban et al. JHEP (2017)

- Very small masses of neutrinos and large mixing angles.
- Mild hierarchy of two heaviest masses ~ 6 .
- ⇒ different mechanism of mass generation?

Takashi Toma (TUM)

Introduction

Neutrino mass generation mechanisms

- Type-I, II, III seesaw mechanism Minkowski, Yanagida, et al. (1977)
- Inverse seesaw, Linear seesaw mechanisms, radiative generation of neutrino masses etc

A. Zee (1980), K.S. Babu (1988), E. Ma, PRD (2006) etc

• Ex. Type-I seesaw: $m_{\nu} \approx -m_D M^{-1} m_D^T$ diagonalized by $U_{\rm PMNS}$

We will show that radiative effects are important when right-handed neutrinos are very hierarchical.

cf: split seesaw. A. Kusenko, F. Takahashi, T. Yanagida, Phys.Lett. B (2010) $M_1 \sim {\rm keV}$, and $M_2, M_3 \sim 10^{12}~{\rm GeV}$

No intermediate scale

The Model (Type-I seesaw)

Add three right-handed neutrinos.

$$\mathcal{L} = \frac{1}{2} \overline{N_i} \partial \!\!\!/ N_i - \frac{M_{ij}}{2} \overline{N_i^c} N_j - (Y_\nu)_{ij} \tilde{H} \overline{L_i} N_j + \text{H.c.}$$

Assumption: rank-1 mass matrix at the Planck scale.

$$M = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & M_3 \end{pmatrix}, \qquad M = \begin{pmatrix} M_1 & 0 & 0 \\ 0 & M_2 & 0 \\ 0 & 0 & M_3 \end{pmatrix}$$

at Planck scale

at Electroweak scale

• M_1 and M_2 are generated by radiative effect. \Rightarrow Renormalization group equation (RGE) for M.

Renormalization Group Equation for M

At 1-loop, only one diagram contributes

$$\beta_M^{\text{1-loop}} = \frac{dM}{dt} = \frac{1}{(4\pi)^2} \left[\left(Y_\nu^{\dagger} Y_\nu \right)^T M + M \left(Y_\nu^{\dagger} Y_\nu \right) \right]$$

RGE

At 2-loop, there are many contributions

$$\beta_M^{2\text{-loop}} = \frac{dM}{dt} = \frac{4}{\left(4\pi\right)^4} \left(Y_\nu^{\dagger} Y_\nu\right)^T M\left(Y_\nu^{\dagger} Y_\nu\right) + \cdots$$

Rank increasing diagram

the other diagrams do not increase rank of M.

RGE

Renormalization Group Equation for ${\cal M}$

All diagrams

Renormalization Group Equation for ${\cal M}$

Full beta function

$$\begin{aligned} \frac{dM}{dt} &= \frac{1}{(4\pi)^2} \left[\left(Y_{\nu}^{\dagger} Y_{\nu} \right)^T M + M \left(Y_{\nu}^{\dagger} Y_{\nu} \right) \right] + \frac{4}{(4\pi)^4} \left(Y_{\nu}^{\dagger} Y_{\nu} \right)^T M \left(Y_{\nu}^{\dagger} Y_{\nu} \right) \\ &+ \frac{1}{(4\pi)^4} \left[\frac{17}{8} \left(g_Y^2 + g_2^2 \right) \left(Y_{\nu}^{\dagger} Y_{\nu} \right) - \frac{1}{4} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} - \frac{1}{4} Y_{\nu}^{\dagger} Y_{e} Y_{e}^{\dagger} Y_{\nu} \right. \\ &\left. - \frac{3}{2} \text{Tr} \left(Y_{e}^{\dagger} Y_{e} + Y_{\nu}^{\dagger} Y_{\nu} + 3Y_{u}^{\dagger} Y_{u} + 3Y_{d}^{\dagger} Y_{d} \right) \left(Y_{\nu}^{\dagger} Y_{\nu} \right) \right]^T M \\ &\left. + \frac{1}{(4\pi)^4} M \left[\frac{17}{8} \left(g_Y^2 + g_2^2 \right) \left(Y_{\nu}^{\dagger} Y_{\nu} \right) - \frac{1}{4} Y_{\nu}^{\dagger} Y_{\nu} Y_{\nu}^{\dagger} Y_{\nu} - \frac{1}{4} Y_{\nu}^{\dagger} Y_{e} Y_{e}^{\dagger} Y_{\nu} \right. \\ &\left. - \frac{3}{2} \text{Tr} \left(Y_{e}^{\dagger} Y_{e} + Y_{\nu}^{\dagger} Y_{\nu} + 3Y_{u}^{\dagger} Y_{u} + 3Y_{d}^{\dagger} Y_{d} \right) \left(Y_{\nu}^{\dagger} Y_{\nu} \right) \right] \end{aligned}$$

• We include only M and Y_{ν} .

Mass eigenvalues

General parametrization at two-loop level:

$$\frac{dM}{dt} = P^T M + M P + Q^T M Q$$

where P, Q are matrices given by coupling constants.

Ex:
$$P = \frac{Y_{\nu}^{\dagger}Y_{\nu}}{(4\pi)^2}$$
 at 1-loop level, $Q = \frac{2Y_{\nu}^{\dagger}Y_{\nu}}{(4\pi)^2}$ at 2-loop level.

RGE

 $\blacksquare \Rightarrow$ In terms of mass eigenvalues

$$\frac{dM_i}{dt} = 2M_i\hat{P}_{ii} + \sum_k M_k \operatorname{Re}\left[\hat{Q}_{ki}^2\right] + \operatorname{RGEs} \text{ for } U$$

where $U^T M U = \text{diag}(M_1, M_2, M_3)$, $\hat{P} = U^{\dagger} P U$, $\hat{Q} = U^{\dagger} Q U$ Only $Q^T M Q$ term increases the rank of M.

Example Plots

RHN mass Yukawa 10¹⁹ 10¹⁶ 0.1 Σ 0 10¹³ 0 10¹³ 0 10¹³ 10¹³ 10¹³ ■ **y**1 Y ■ **y**2 **y**3 10¹⁰ 10-2 ■ *M*₃ 10⁷ ■ *M*₂ 10⁻³ ■ M₁ 5 10 15 15 5 10 $Log[\mu]$ $Log[\mu]$

RGE

Parametrization: $Y_{\nu} = V_R \operatorname{diag}(y_1, y_2, y_3) V_L^{\dagger}$ Initial values at $\Lambda = M_P$: $\theta_{23} = 0.1$, $\theta_{13} = 0.2$, $\theta_{12} = 0.3$, $y_1 = 0.001$, $y_2 = 0.2$, $y_3 = 1$, $M_1 = M_2 = 0$, $M_3 = M_P$

Analytic results

• Formal RGE:
$$\frac{dM}{dt} = P^T M + MP + Q^T MQ$$

Mass eigenvalues of right-handed neutrinos at scale μ obtained by iterative integration

$$\begin{split} M_1 &= \frac{1}{2} M_3(\Lambda) \operatorname{Re}\left(\hat{Q}_{32}^2\right) \operatorname{Re}\left(\hat{Q}_{21}^2\right) \log^2\left(\frac{\mu}{\Lambda}\right) \left[1 + \frac{3}{2} \log\left(\frac{\mu}{\Lambda}\right)\right], \\ M_2 &= M_3(\Lambda) \operatorname{Re}\left(\hat{Q}_{32}^2\right) \log\left(\frac{\mu}{\Lambda}\right), \\ M_3 &= M_3(\Lambda) \end{split}$$

only leading contribution is considered. $\hat{Q} = U^{\dagger}QU$ and U is unitary matrix diagonalizing M. M_1 is 4-loop order? \Rightarrow squared logarithm is dominant

Analytic results 2

For light neutrino masses: $m_{\nu} = -m_D M^{-1} m_D^T$ $(m_D = Y_{\nu} \langle H \rangle)$ mass eigenvalues satisfy $m_1 m_2 m_3 = \frac{y_1^2 y_2^2 y_3^2 \langle H \rangle^6}{M_1 M_2 M_3}$ where parametrized as $Y_{\nu} = V_R Y_D V_L^{\dagger}$

• One can choose like: $m_3 \sim \frac{y_3^2 \langle H \rangle^2}{M_2}$, $m_2 \sim \frac{y_2^2 \langle H \rangle^2}{M_1}$, $m_1 \sim \frac{y_1^2 \langle H \rangle^2}{M_3}$ Heaviest neutrino mass: $m_3 \sim \mathcal{O}(0.1) \text{ eV} \left(\frac{y_3}{1}\right)^{-2} \left(\frac{M_3}{M_P}\right)^{-1}$ $\Rightarrow \text{ correct mass scale is obtained with } y_3 = \mathcal{O}(1) \text{ because}$ $M_2 \sim M_P/(4\pi)^4 \sim 10^{14} \text{ GeV}$ Lightest neutrino mass: $m_1 \lesssim 10^{-5} \text{ eV}$ (almost massless). m_2 and m_3 correspond to solor and atomospheric neutrino masses.

Rank increasement and flavor symmetry

Number of rank increasement can be understood with global flavor symmetry

$$\mathcal{L} = -(Y_e)_{ij} H^{\dagger} \overline{E_i} L_j - (Y_{\nu})_{ij} H \overline{N_i} L_j - \frac{M_{ij}}{2} \overline{N_i^c} N_j + \text{H.c.}$$

Neutrino masses are protected by $U(3)_L \times U(3)_N$ symmetry (neglecting charged lepton Yukawa)

rank Y_{ν} 1231 $U(2)_L \times U(1)_N$ $U(1)_L$ No symmetryrank M2 $U(2)_L$ $U(1)_L$ No symmetry3 $U(2)_L$ $U(1)_L$ No symmetry

Ex.1 $U(2)_L \times U(1)_N \Rightarrow$ two ν_L and one N are massless Ex.2 $U(1)_L \Rightarrow$ one ν_L is massless

Number of Parameters

Parametrize $Y_{\nu} = V_R Y_D V_L^{\dagger}$

- For rank $Y_{\nu} = 3$ and rank M = 3 (usual case) eigenvalues $y_{1,2,3}$, $M_{1,2,3}$ and 6 mixing angles and 6 CP phases \Rightarrow 18 parameters
- For rank Y_ν = 2 and rank M = 1 eigenvalues y_{2,3}, M₃ and 5 mixing angles and 3 CP phases ⇒ 11 parameters (minimal number of parameters)
 CP phases are reduced: 6 ⇒ 3 Predictive Leptogenesis

Summary

- If right-handed neutrino masses are highly hierarchical at the Planck scale, radiative corrections dominate right-handed neutrino masses at low scale. (No any intermediate scale)
- 2 Small neutrino masses are naturally generated by two lighter RHNs.
- 3 Number of parameters are reduced and this framework leads predictive phenomenology.

Future Works

Application to leptogenesis, sterile neutrino dark matter, the Scotogenic model.