New Signals from Dark Sectors

Pedro Schwaller (Mainz University)

Planck 2018 Bethe Center for theoretical Physics, Bonn

May 25, 2018

Dark Sector?

Dark Sector, also stylized as darkSector, is a third-person shooter video game developed by Digital Extremes for the Xbox 360, PlayStation 3 and Microsoft Windows. Wikipedia

q .

3

An extension of the SM with its own dynamics

with weak/suppressed couplings to SM particles

hopefully contains a DM candidate

Dark sectors and mediators

Dark sectors and mediators

Gravitational Waves

Long lived particles/ dark showers

Dark Sectors

- Consider a dark sector with SU(N) symmetry and confinement scale Λ
- A portal interaction with $M \gg \Lambda$
- e.g. a QCD like dark sector with a Z' mediator

• Then you can expect something like this:

Why?

- Hidden valleys generic in string theory
- Dark QCD e.g. in Twin Higgs models, SIMP DM
- Asymmetric DM provides strong motivation for

see Kathryn's talk!

- ~ 5 GeV scale in hidden sector
- TeV scale mediator for asymmetry transfer e.g. Bai, PS, 2014

$$\frac{\Lambda}{M} \sim \mathcal{O}(10^2) \quad \rightarrow \text{rich shower!}$$

Dark Pion Lifetime

• Integrate out mediator, match to dark pion current

• Decay to SM jets (pions)

$$\Gamma(\pi_d \to \bar{d}d) \approx \frac{f_{\pi_d}^2 m_d^2}{32\pi M_{X_d}^4} m_{\pi_d} \sim \text{CM}$$

Decay in LHC detectors!

Emerging Jets at the LHC

- Production of mediator, decay to dark quarks
- Characteristic:
 - few/no tracks
 in inner tracker
- New "emerging" jet signature
- Smoking gun of composite hidden sectors

PS, Stolarski, Weiler, 2015

Reach ATLAS/CMS

- Using simple strategy (veto on prompt tracks)
- More refined searches ongoing (ATLAS, CMS)

PS, Stolarski, Weiler, 2015

Adding flavour

- So far, assumed universal lifetime for dark pions
- Actually

$$\lambda \bar{d}_R Q_L \Phi = \lambda_{ij} \bar{d}_{Ri} Q_{Lj} \Phi$$

• Not all pions are equal:

S. Renner, PS, 1803.08080

Flavour matters

dark pion properties

fixed target experiments

Emerging Jets revisited

Rare decays

• Allows rare decays

 $B \to (K, \pi) + \text{invisible}$ $K \to \pi + \text{invisible}$

- Strongest close to thresholds: $K \to \pi \pi_D$ wins over $K \to \pi Q \bar{Q}$
- Don't vanish in flavour symmetric limit!

great resource: Kamenik, Smith, 2011

S. Renner, PS, 1803.08080

Bounds from rare decays

- Best bound on couplings for very light dark pions
- Dark pion production in fixed target expts!

S. Renner, PS, 1803.08080

Fixed target

• My simplified NA62/SHiP:

- Leading channels: $\pi_D \to \pi K$, $\pi_D \to \pi^+ \pi^- \pi^0$
- No $\pi\pi$, probe of CP nature of π_D

S. Renner, PS, 1803.08080

Fixed target reach

GWs from the dark sector

Consider simple DS model

• Kinetically mixed dark photon (or Z'):

 $\epsilon Z^{\mu
u}A'_{\mu
u}$

- Not massless → probably some dark Higgs boson involved
- Symmetry breaking phase transition in the early universe

 $T_c \sim m_{A'}$

Cosmological Phase Transitions

• Early Universe in symmetric phase (e.g. unbroken electroweak symmetry)

GWs from PTs

First order PT \rightarrow Bubbles nucleate, expand

Bubble collisions → Gravitational Waves

Stochastic GW "background"

- PT characterised by few parameters, calculable in QFT:
 - Latent heat $\alpha \approx \frac{\Omega_{\rm vacuum}}{\Omega_{\rm rad}}$
 - Bubble wall velocity v
 - Bubble nucleation rate β
 - PT temperature T_{st}
- GW spectra from simulations:
 - Bubble wall collisions
 - Turbulence
 - Sound waves

Hindmarsh et al, 2015

Phenomenological Parameterisations: Caprini et al, 1512.06239

Peak Frequency

• Set by Hubble rate at time of production

$$H \sim \frac{T_c^2}{M_{\rm Pl}} \sim \frac{v^2}{M_{\rm Pl}}$$

• and redshift

$$f_p \sim 10^{-6} \text{ Hz} \left(\frac{T_c}{100 \text{ GeV}}\right)$$

Example: Strong EWPT

Dark sector

• Rough relation:

$$T_c \sim m_{DM}$$
 or $T_c \sim m_{\rm mediator}$

- Viable models span large range of masses from
 - MeV (SIMP, dark photon etc...)
 - ~100 TeV (strongly coupled thermal relics)

Higgsed dark photon model

- A'_{μ} , S
 - $v_s = 10 \text{ keV}$
- PTAs probe very low
 DS scale
- Constraints from BBN, N_{eff}
- More details:

Toby Opferkuch's talk!

 $\log_{10}(SNR)$ for SKA (20 years)

 $m_{A'} > m_{h_D}$

Leptophilic DM

- SM + RH $\nu + U(1)_{\ell}$
- Vectorlike leptons to cancel gauge anomalies → DM candidate
- GWs from $U(1)_{L}$ breaking
- More details:

Eric Madge's talk!

(De)confinement PT

- QCD "like" dark sectors
- Nonabelian SU(N) dark sector, confinement scale Λ_d
- n_f light/massless flavours
- First order PT for
 - $N_d \ge 3$ $n_f = 0$
 - $N_d \ge 3$ $3 \le n_f < 4N_d$

Non-perturbative Quantitative prediction of GW signal difficult

Summary

- Search for the dark sector is ongoing, activity on many fronts
 - Gravitational wave signals from early universe phase transition in the dark sector
 - Long lived particle searches at colliders (and beyond!)
- For composite dark sectors:
 - Emerging jets at ATLAS/CMS (searched for!)
 - Flavour adds new dimension to emerging jets phenomenology
 - Interesting opportunity for fixed target, LHCb

Thank You

Dark QCD

- SU(N) dark sector with neutral "dark quarks"
- Confinement scale
 - $\Lambda_{\mathrm{darkQCD}}$
- DM is composite
 "dark proton"
- "Dark pions" unstable, long lived

Flavour constraints

Parameterisation from Agrawal, Blanke, Gemmler, 2014

- For degenerate dark quark masses, can absorb V
- If $D \propto 1$, SM flavour symmetry unbroken

• Write
$$D = \left(\lambda_0 \cdot \mathbb{1} + \operatorname{diag}(\lambda_1, \lambda_2, -(\lambda_1 + \lambda_2))\right)$$

• Absent in $D = \lambda_0 \cdot 1$ limit!

$$\left(\sum_{i=1}^{3} \lambda_{qi} \lambda_{q'i}^{*}\right)^{2} = \left(\left[UD(UD)^{\dagger}\right]_{qq'}\right)^{2} = \lambda_{0}^{4} \left(\left[UU^{\dagger}\right]_{qq'}\right)^{2} = 0$$

$\Delta F=2$

 Otherwise bounds on mixing matrix

$$U = U_{12} U_{13} U_{23}$$

- S. Renner, PS, in progress

- $\Delta F = 1$
- Allows rare decays

 $B \to (K, \pi) + \text{invisible}$ $K \to \pi + \text{invisible}$

- Strongest close to thresholds: $K \to \pi \pi_D$ wins over $K \to \pi Q\bar{Q}$
- Don't vanish in flavour symmetric limit!

great resource: Kamenik, Smith, 2011

Emerging jets revisited

• Range of dark pion lifetimes

Scenario	Flavour composition	$c au_0\lambda_0^4\ /mm$	$c au_0\lambda_0^4\ /mm$
		$\left \left(m_{\pi_D} = f_{\pi_D} = 2 \text{GeV} \right) \right.$	$(m_{\pi_D} = f_{\pi_D} = 15 \text{GeV})$
Aligned	Diagonal	88.6	1.08×10^{-4}
	$ar{Q}_1 Q_2$	88.6	0.210
	$ar{Q}_1 Q_3$	Long-lived	1.08×10^{-4}
	$ar{Q}_2 Q_3$	Long-lived	1.08×10^{-4}
$\sin \theta_{12} = 0.1,$	Diagonal	86.5	1.72×10^{-3}
$\Delta_{12} = 0.5$	$ar{Q}_1 Q_2$	40.0	9.48×10^{-2}
	$ar{Q}_1 Q_3$	Long-lived	1.92×10^{-4}
	$ar{Q}_2 Q_3$	Long-lived	4.25×10^{-4}
$\sin\theta_{13} = 0.05,$	Diagonal	88.6	3.37×10^{-4}
$\Delta_{13} = 0.5$	$ar{Q}_1 Q_2$	56.9	2.29×10^{-2}
	$\bar{Q}_1 Q_3$	5.7×10^{6}	1.23×10^{-4}
	$\bar{Q}_2 Q_3$	2.27×10^{5}	1.91×10^{-4}

Emerging jets revisited

Fixed target

• e.g. NA62:

Fixed target

• my cartoon :)

 10^{18} 10^{11} 10^{6} $10^{?}$

in progress...

QCD Phase Diagram

 $m_{u,d}$

Phase Diagram II

Check dark shower w/ meson multiplicity

e.g. Ellis, Stirling, Webber

Figure 11: Average dark meson multiplicity in $e^+e^- \rightarrow Z'^* \rightarrow \bar{Q}_d Q_d$ as a function of the centre-of-mass energy \sqrt{s} . We compare the output of the modified PYTHIA implementation for $n_f = 7$ (blue circles) and $n_f = 2$ (red squares) to the theory prediction Eqn. (15), where we only float the normalisation. The dark QCD scale and dark meson spectrum corresponds to benchmark model B.

LHCb opportunities

• Z' mediator is difficult to trigger at ATLAS/CMS Same if dominant production is off-shell

- Reconstruct individual dark pions, differentiate using lifetime, mass, decay products
- Emerging jets without (hard) trigger requirements?

 q_D

 q_D

Off-shell production

• Total rate:
$$\sigma(pp \to \bar{Q}_D Q_D) \approx 8.2 \text{ pb} \times \left(\frac{\text{TeV}}{\Lambda}\right)^4 \times N_d \times N_F$$

Forward region

• Fraction of all signal events with N dark pions in $2 < \eta < 5$

• Momentum (not pT) distribution of dark pions in $2 < \eta < 5$

Decay characteristics

- Number of charged tracks from dark pion decays
- Also depend on flavour structure some more work!

Very very (very) rough estimate

- 20 inverse fb
- Assume that events with 3 or more reconstructed dark pions are significantly different from QCD (i.e. no background)
- 10% reconstruction efficiency
- Sensitivity to $\sigma=8~{
 m fb}$, corresponds to $\Lambdapprox 5~{
 m TeV}$